MATH2111 Higher Several Variable Calculus Differentiable Functions

Dr. Jonathan Kress
School of Mathematics and Statistics University of New South Wales

Semester 1, 2014

UNSW

Differentiability of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $a \in \mathbb{R}$ means there is a "good" straight line ${ }^{1}$ approximation to f near a called the tangent line. This approximating function is given by

$$
T(x)=f(a)+f^{\prime}(a)(x-a)=f(a)-f^{\prime}(a) a+f^{\prime}(a) x=y_{0}+L(x) .
$$

where, for each a, $y_{0}=f(a)-f^{\prime}(a) a$ is a fixed number and $L: \mathbb{R} \rightarrow \mathbb{R}$ is the linear map given by $L(x)=f^{\prime}(a) x$.
$f^{\prime}(a)$ is called the derivative of f at a and is the slope of the "good" straight line approximation. It can be found by calculating the a limit.

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

Affine maps

Definition

The function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is affine means there is $\mathbf{y}_{0} \in \mathbb{R}^{m}$ and a linear map (ie matrix) $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
T(\mathbf{x})=\mathbf{y}_{0}+\mathbf{L}(\mathbf{x}) .
$$

An affine function $T: \mathbb{R} \rightarrow \mathbb{R}$ has the form

$$
T(x)=b+m x, \quad \text { for constants } m, b \in \mathbb{R} .
$$

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a if there is a "good" affine approximation to f at a given by

$$
T(x)=\underbrace{f(a)-f^{\prime}(a) a}_{y_{0}}+\underbrace{f^{\prime}(a) x}_{\mathbf{L}(x)}
$$

and "good" means

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

Good affine approximation

Need to rewrite the definition of "good" in a way that can be used for $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& \Leftrightarrow \quad 0=\lim _{x \rightarrow a} \frac{f(x)-f(a)-f^{\prime}(a)(x-a)}{x-a} \\
& \Leftrightarrow \quad 0=\lim _{x \rightarrow a} \frac{f(x)-T(x)}{x-a} \\
& \Leftrightarrow \quad 0=\lim _{x \rightarrow a}\left|\frac{f(x)-T(x)}{x-a}\right| \\
& \Leftrightarrow \quad 0=\lim _{x \rightarrow a} \frac{|f(x)-T(x)|}{|x-a|} \\
& T(x)=f(a)+f^{\prime}(a)(x-a)=f(a)+L(x-a) .
\end{aligned}
$$

Differentiability of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

Definition

A function $\mathbf{f}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable $\mathbf{a} \in \Omega$ if there is a linear map $\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{x \rightarrow \mathbf{a}} \frac{\|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-\mathbf{L}(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0 .
$$

The matrix of the linear map \mathbf{L} is called the derivative of \mathbf{f} at \mathbf{a} and is denoted $D_{\mathrm{a}} \mathbf{f}$.

We could use the $\epsilon-\delta$ definition of the limit to give an alternative form.

Definition (Alternative)

A function $\mathbf{f}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable $\mathbf{a} \in \Omega$ if there is a linear map
$\mathbf{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for all $\epsilon>0$ there exists $\delta>0$ such that for $\mathbf{x} \in \Omega$

$$
\|\mathbf{x}-\mathbf{a}\|<\delta \Rightarrow\|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-\mathbf{L}(\mathbf{x}-\mathbf{a})\|<\epsilon\|\mathbf{x}-\mathbf{a}\| .
$$

Differentiability examples

Suppose $\mathbf{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation given by $\mathbf{T}(\mathbf{x})=A_{\boldsymbol{T}} \mathbf{x}$. Is it differentiable and if so, what is it's derivative?

$$
\lim _{x \rightarrow \mathbf{a}} \frac{\|\mathbf{T}(\mathbf{x})-\mathbf{T}(\mathbf{a})-\mathbf{T}(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=\lim _{x \rightarrow \mathbf{a}} \frac{0}{\|\mathbf{x}-\mathbf{a}\|}=0 .
$$

Hence \mathbf{T} is differentiable and $D_{\mathbf{a}} \mathbf{T}=A_{\mathbf{T}}$.

Differentiability examples

For $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with

$$
\mathbf{f}(x, y)=\binom{x^{2}+2 x y}{x+y^{2},} \quad L=\left(\begin{array}{ll}
4 & 2 \\
1 & 2
\end{array}\right) \quad \text { and } \quad \mathbf{a}=\binom{1}{1}
$$

show that \mathbf{f} is differentiable at \mathbf{a} and that the matrix of its derivative is $D_{\mathbf{a}} \mathbf{f}=L$.

$$
\begin{aligned}
\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-L(\mathbf{x}-\mathbf{a}) & =\binom{x^{2}+2 x y}{x+y^{2}}-\binom{3}{2}-\left(\begin{array}{ll}
4 & 2 \\
1 & 2
\end{array}\right)\binom{x-1}{y-1} \\
& =\binom{x^{2}+2 x y-4 x-2 y+3}{y^{2}+1-2 y}
\end{aligned}
$$

So for \mathbf{f} to be differentiable at a with derivative L, we need

$$
\lim _{(x, y) \rightarrow(1,1)} \frac{\sqrt{\left(x^{2}+2 x y-4 x-2 y+3\right)^{2}+\left(y^{2}+1-2 y\right)^{2}}}{\sqrt{(x-1)^{2}+(y-1)^{2}}}=0
$$

This is true, but takes a bit of work.

Partial derivatives

If we fix a value of y we can calculate the rate of change of $f(x, y)$ as only x changes. This is called the partial derivative of $f(x, y)$ with respect to x.

In the $y=b$ slice we can find the slope of the tangent line at the point $x=a$.

$$
D_{1} f(a, b)=f_{1}(a, b)=f_{x}(a, b)=\frac{\partial f}{\partial x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h}
$$

Partial derivatives

If we fix a value of x we can calculate the rate of change of $f(x, y)$ as only y changes. This is called the partial derivative of $f(x, y)$ with respect to y.

In the $x=a$ slice we can find the slope of the tangent line at the point $y=b$.

$$
D_{2} f(a, b)=f_{2}(a, b)=f_{y}(a, b)=\frac{\partial f}{\partial y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h} .
$$

Partial derivatives

Just as in one variable calculus, we rarely use the definition to calculate a derivative, we use the 'rules' of differentiation remembering to treat some variables as constants.

If $z=f(x, y)=x^{2} y+x^{3}+e^{2 y}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

$$
\frac{\partial z}{\partial x}=2 x y+3 x^{2}, \quad \frac{\partial z}{\partial y}=x^{2}+2 e^{2 y}
$$

Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ if $f(x, y)=\left(x^{2}+y^{3}\right)^{\frac{1}{2}}$.

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{1}{2}\left(x^{2}+y^{3}\right)^{-\frac{1}{2}} 2 x=x\left(x^{2}+y^{3}\right)^{-\frac{1}{2}} \\
\frac{\partial f}{\partial y}=\frac{1}{2}\left(x^{2}+y^{3}\right)^{-\frac{1}{2}} 3 y^{2}=\frac{3}{2} y^{2}\left(x^{2}+y^{3}\right)^{-\frac{1}{2}}
\end{gathered}
$$

Find $\frac{\partial G}{\partial b}$ if $G(a, b, c)=a^{2} b^{3} c^{4}+b c$.

$$
\frac{\partial G}{\partial b}=3 a^{2} b^{2} c^{4}+c .
$$

Partial derivatives

We can also calculate higher partial derivative, but unlike one variable calculus, there are a number of possibilities.

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) \text { is denoted } \frac{\partial^{2} f}{\partial x^{2}} \text { or } f_{x x} \text { or } f_{11} \\
& \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) \text { is denoted } \frac{\partial^{2} f}{\partial x \partial y} \text { or } f_{y x} \text { or } f_{12} \\
& \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) \text { is denoted } \frac{\partial^{2} f}{\partial y \partial x} \text { or } f_{x y} \text { or } f_{21} \\
& \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right) \text { is denoted } \frac{\partial^{2} f}{\partial y^{2}} \text { or } f_{y y} \text { or } f_{22}
\end{aligned}
$$

For $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ with coordinates x_{i} and standard basis vectors \mathbf{e}_{i}

$$
\frac{\partial f}{\partial x_{i}}(\mathbf{a})=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{a}+h \mathbf{e}_{i}\right)-f(\mathbf{a})}{h} .
$$

Partial derivatives

For $f(x, y)=x^{2} y+2$,

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x y, \quad \frac{\partial f}{\partial y}=x^{2} \\
\frac{\partial^{2} f}{\partial x^{2}}=2 y, \quad \frac{\partial^{2} f}{\partial y^{2}}=0, \\
\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}(2 x y)=2 x, \\
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}\left(x^{2}\right)=2 x .
\end{gathered}
$$

Notice that, as expected, the two mixed partial derivatives are equal.

Partial derivatives

Theorem (Clariaut's theorem)

If $f, \frac{\partial f}{\partial x_{i}}, \frac{\partial f}{\partial x_{j}}, \frac{\partial^{2} f}{\partial x_{i} x_{j}}, \frac{\partial^{2} f}{\partial x_{j} x_{i}}$ all exist and are continuous on an open set around \mathbf{a} then

$$
\frac{\partial^{2} f}{\partial x_{i} x_{j}}(\mathbf{a})=\frac{\partial^{2} f}{\partial x_{j} x_{i}}(\mathbf{a}) .
$$

That is, the partial derivatives commute.

Here's an example where they don't commute.
Calculate $f_{x y}(0,0)$ and $f_{y x}(0,0)$ for

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\ 0 & \text { for }(x, y)=(0,0)\end{cases}
$$

Partial derivatives

$$
\begin{aligned}
& f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\
0 & \text { for }(x, y)=(0,0) .\end{cases} \\
& \text { Away from (} 0,0 \text {), } f \text { is a well } \\
& \text { defined rational function of its } \\
& \text { arguments. } \\
& f_{x}(x, y)=\frac{y\left(x^{4}-y^{4}+4 x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad f_{y}(x, y)=\frac{x\left(x^{4}-y^{4}-4 x^{2} y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \text {. }
\end{aligned}
$$

At $(0,0)$ we need to use the definition to calculate the partial derivatives.

$$
\begin{gathered}
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 . \\
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 . \\
f_{x y}(0,0)=\lim _{h \rightarrow 0} \frac{f_{x}(0, h)-f_{x}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h\left(0^{4}-h^{4}+0\right)}{h^{4}}-0}{h}=-1 . \\
f_{y x}(0,0)=\lim _{h \rightarrow 0} \frac{f_{y}(h, 0)-f_{y}(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h\left(h^{4}-0^{4}-0\right)}{h^{4}}-0}{h}=1 \neq f_{x y}(0,0) .
\end{gathered}
$$

Jacobian matrix

Definition

If all partial derivatives of $\mathbf{f}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ exist at $\mathbf{a} \in \Omega$, then the Jacobian matrix of \mathbf{f} at \mathbf{a} is

$$
J_{\mathbf{a}} \mathbf{f}=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{1}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{a}) \\
\frac{\partial f_{2}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{2}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(\mathbf{a}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\mathbf{a}) & \frac{\partial f_{m}}{\partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\mathbf{a})
\end{array}\right)
$$

Theorem

For $\mathbf{f}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and an interior point $\mathbf{a} \in \Omega$. If \mathbf{f} is differentiable at a then all partial derivatives $\frac{\partial f_{j}}{\partial x_{i}}$ of the components of \mathbf{f} exist at \mathbf{a} and $D_{\mathrm{a}} \mathbf{f}=J_{\mathrm{a}} \mathbf{f}$.

That is, where \mathbf{f} is differentiable, its derivative is given by its Jacobian matrix.

Jacobian matrix

The Jacobian matrix may exist even when the function is not differentiable.
Example: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $f(x, y)= \begin{cases}0 & \text { for } x=0 \text { or } y=0, \\ -1 & \text { otherwise. }\end{cases}$
Clearly $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$. However, the affine function

$$
T(x, y)=f(0,0)+J_{(0,0)} f\binom{x}{y}=0+\left(\begin{array}{ll}
0 & 0
\end{array}\right)\binom{x}{y}=0
$$

is not a "good" approximation to $f(x, y)$ near $(0,0)$.
Notice that in this example, f is not continuous. Should a differentiable function be continuous?

Differentiable \Rightarrow continuous

Lemma

For $\mathbf{x} \in \mathbb{R}^{n}$ and L an $m \times n$ matrix, $\lim _{x \rightarrow \mathbf{0}}\|L \mathbf{x}\|=0$.

Proof.

Let \mathbf{r}_{i} be the $i^{\text {th }}$ row of L and so the $i^{\text {th }}$ row of $L \mathbf{x}$ is $\mathbf{r}_{i} \cdot \mathbf{x}$. Then, using the Cauchy-Schwarz inequality $(|\mathbf{a} \cdot \mathbf{b}| \leq\|\mathbf{a}\|| | \mathbf{b} \|)$,

$$
\|L \mathbf{x}\|=\sqrt{\sum_{i=1}^{m}\left(\mathbf{r}_{i} \cdot \mathbf{x}\right)^{2}} \leq \sqrt{\sum_{i=1}^{m}\left\|\mathbf{r}_{i}\right\|^{2}\|\mathbf{x}\|^{2}}=\|\mathbf{x}\| \sqrt{\sum_{i=1}^{m}\left\|\mathbf{r}_{i}\right\|^{2}} .
$$

So,

$$
0 \leq \lim _{x \rightarrow 0}\|L x\| \leq \sqrt{\sum_{i=1}^{m}\left\|\mathbf{r}_{i}\right\|^{2}} \lim _{x \rightarrow 0}\|x\|=0 .
$$

Hence, $\lim _{x \rightarrow 0}\|L x\|=0$.

Differentiable \Rightarrow continuous

Theorem

Suppose $\Omega \in \mathbb{R}^{n}$ is open and $\mathbf{f}: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable on Ω. Then \mathbf{f} is continuous on Ω.

Proof.

If \mathbf{f} is differentiable at a then there is a matrix L such that

$$
\lim _{x \rightarrow \mathbf{a}} \frac{\|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-L(\mathbf{x}-\mathbf{a})\|}{\|\mathbf{x}-\mathbf{a}\|}=0 \Rightarrow \lim _{x \rightarrow \mathbf{a}}\|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-L(\mathbf{x}-\mathbf{a})\|=0 .
$$

Now,

$$
\begin{aligned}
\lim _{x \rightarrow \mathbf{a}}\|f(\mathbf{x})-\mathbf{f}(\mathbf{a})\| & =\lim _{x \rightarrow \mathbf{a}}\|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-L(\mathbf{x}-\mathbf{a})+L(\mathbf{x}-\mathbf{a})\| \\
& \leq \lim _{x \rightarrow \mathbf{a}}\|\mathbf{f}(\mathbf{x})-\mathbf{f}(\mathbf{a})-L(\mathbf{x}-\mathbf{a})\|+\|L(\mathbf{x}-\mathbf{a})\| \\
& =0+0=0
\end{aligned}
$$

So $\lim _{\mathbf{x} \rightarrow \mathbf{a}} \mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{a})$ and hence \mathbf{f} is continuous at \mathbf{a}.

Differentiability

Theorem

Suppose $\Omega \subset \mathbb{R}^{n}$ is open and $\mathbf{f}: \Omega \rightarrow \mathbb{R}^{m}$. If $\frac{\partial f_{j}}{\partial x_{i}}$ exists and is continuous on Ω for all $i=1, \ldots, n$ and $j=1, \ldots, m$, then \mathbf{f} is differentiable on Ω.

Example: Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $f(x, y)=\left(x^{2}+2 x y, x+y^{2}\right)$.
The Jacobian exists and is given by $J_{(x, y)} f=\left(\begin{array}{cc}2 x+2 y & 2 x \\ 1 & 2 y\end{array}\right)$.
Each entry is continuous on \mathbb{R}^{2} and hence f is differentiable on \mathbb{R}^{2} with derivative $D_{(x, y)} f=J_{(x, y)} f$.

Notation: We often write $J f(x, y)$ instead of $J_{(x, y)} f$ or even just $J f$. Eg, $J f(1,1)=\left(\begin{array}{ll}4 & 2 \\ 1 & 2\end{array}\right)$. Similarly form $D f, D_{(x, y)} f, D f(x, y)$.

Sketch of proof for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

The MVT says that along side \mathbf{A} there is $a \in\left(x_{0}, x_{0}+h_{1}\right)$ such that

$$
f\left(x_{0}+h_{1}, y_{0}\right)-f\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(a, y_{0}\right) h_{1} .
$$

Continuity of $\frac{\partial f}{\partial x}$ says $\forall \epsilon_{1}>0$ we can choose h_{1} small enough so that

$$
\left|\frac{\partial f}{\partial x}\left(a, y_{0}\right)-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right|<\epsilon_{1} \quad \Rightarrow \quad \frac{\partial f}{\partial x}\left(a, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)+\epsilon_{1}^{\prime}
$$

where $-\epsilon_{1}<\epsilon_{1}^{\prime}<\epsilon_{1}$. So,

$$
f\left(x_{0}+h_{1}, y_{0}\right)-f\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) h_{1}+\epsilon_{1}^{\prime} h_{1} .
$$

Sketch of proof for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

Continuity of $\frac{\partial f}{\partial y}$ says $\forall \epsilon_{2}>0$ we can choose $\left\|\left(h_{1}, h_{2}\right)\right\|$ small enough so that

$$
\left|\frac{\partial f}{\partial y}\left(x_{0}+h_{1}, b\right)-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right|<\epsilon_{2} \quad \Rightarrow \quad \frac{\partial f}{\partial y}\left(x_{0}+h_{1}, b\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)+\epsilon_{2}^{\prime}
$$

where $-\epsilon_{2}<\epsilon_{2}^{\prime}<\epsilon_{2}$. So,

$$
f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)-f\left(x_{0}+h_{1}, y_{0}\right)=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) h_{2}+\epsilon_{2}^{\prime} h_{2}
$$

Sketch of proof for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
\begin{gathered}
f\left(x_{0}+h_{1}, y_{0}\right)-f\left(x_{0}, y_{0}\right)=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) h_{1}+\epsilon_{1}^{\prime} h_{1} . \\
f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)-f\left(x_{0}+h_{1}, y_{0}\right) \\
=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) h_{2}+\epsilon_{2}^{\prime} h_{2} .
\end{gathered}
$$

So,

$$
\begin{aligned}
& f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)-f\left(x_{0}, y_{0}\right) \\
& \quad=f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)-f\left(x_{0}+h_{1}, y_{0}\right)+f\left(x_{0}+h_{1}, y_{0}\right)-f\left(x_{0}, y_{0}\right) \\
& \quad=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) h_{1}+\epsilon_{1}^{\prime} h_{1}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) h_{2}+\epsilon_{2}^{\prime} h_{2} \\
& \quad=J f\left(x_{0}, y_{0}\right) \cdot\left(h_{1}, h_{2}\right)+\left(\epsilon_{1}^{\prime}, \epsilon_{2}^{\prime}\right) \cdot\left(h_{1}, h_{2}\right)
\end{aligned}
$$

Sketch of proof for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$

For any $\epsilon_{1}>0$ and $\epsilon_{2}>0$ we can choose $h_{1}>0$ and $h_{2}>0$ such that

$$
\begin{aligned}
0 & \leq \frac{\left|f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)-f\left(x_{0}, y_{0}\right)-J f\left(x_{0}, y_{0}\right) \cdot\left(h_{1}, h_{2}\right)\right|}{\left\|\left(h_{1}, h_{2}\right)\right\|} \\
& =\frac{\left|\left(\epsilon_{1}^{\prime}, \epsilon_{2}^{\prime}\right) \cdot\left(h_{1}, h_{2}\right)\right|}{\left\|\left(h_{1}, h_{2}\right)\right\|} \\
& \leq \frac{\left\|\left(\epsilon_{1}^{\prime}, \epsilon_{2}^{\prime}\right)\right\|\left\|\left(h_{1}, h_{2}\right)\right\|}{\left\|\left(h_{1}, h_{2}\right)\right\|} \\
& =\left\|\left(\epsilon_{1}^{\prime}, \epsilon_{2}^{\prime}\right)\right\| \\
& \leq\left\|\left(\epsilon_{1}, \epsilon_{2}\right)\right\|
\end{aligned}
$$

So,

$$
\lim _{\left(h_{1}, h_{2}\right) \rightarrow(0,0)} \frac{\left|f\left(x_{0}+h_{1}, y_{0}+h_{2}\right)-f\left(x_{0}, y_{0}\right)-J f\left(x_{0}, y_{0}\right) \cdot\left(h_{1}, h_{2}\right)\right|}{\left\|\left(h_{1}, h_{2}\right)\right\|}=0 .
$$

Hence f is differentiable at $\left(x_{0}, y_{0}\right)$ with derivative $J f\left(x_{0}, y_{0}\right)$.

Gradient of f

For $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, the Jacobian, if it exists, is a $1 \times n$ matrix

$$
J f=\left(\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right) .
$$

Often we think of this as a vector called the gradient of f. That is,

$$
\operatorname{grad}(f)=\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right) .
$$

$\left[\right.$ Think of $\left.\nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \cdots, \frac{\partial}{\partial x_{n}}\right).\right]$
Example: $\quad f: \mathbb{R}^{4} \rightarrow \mathbb{R} \quad f(x, y, z, t)=x y z+\cos (x+3 t)$.

$$
\nabla f=(y z-\sin (x+3 t), x z, x y,-3 \sin (x+3 t))
$$

$$
\nabla f(1,2,3,0)=(6-\sin 1,3,2,-3 \sin 1)
$$

Affine approximation

Let $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable at $\mathbf{a} \in \Omega$. The best affine approximation to f at a can be written in terms of the gradient vector.

$$
T(\mathbf{x})=f(\mathbf{a})+\nabla f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})
$$

For $n=1$:

$$
T(x)=f(a)+f^{\prime}(a)(x-a) .
$$

For $n=2: \quad(\mathbf{a}=(a, b))$

$$
\begin{aligned}
T(x, y) & =f(a, b)+\nabla f(a, b) \cdot((x, y)-(a, b)) \\
& =f(a, b)+\left(\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b)\right) \cdot(x-a, y-b) \\
& =f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)
\end{aligned}
$$

$z=T(x, y)$ is the tangent plane to $z=f(x, y)$ at $(x, y)=(a, b)$.

Tangent planes

Find the equation of the tangent plane to the graph of $f(x, y)=x^{2}+y^{4}+e^{x}$ at the point $(1,0)$.

$$
\nabla f(x, y)=\left(f_{x}(x, y), f_{y}(x, y)\right)=\left(2 x+e^{x}, 4 y^{3}\right)
$$

So

$$
f(1,0)=1+e, \quad \nabla f(1,0)=(2+e, 0)
$$

and the tangent plane is

$$
\begin{aligned}
z & =f(1,0)+\nabla f(1,0) \cdot(x-1, y-0) \\
& =1+e+(2+e)(x-1)+0 y \\
& =-1+(2+e) x .
\end{aligned}
$$

Chain rule

First look at the composition of two affine maps $T_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $T_{2}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$.

$$
T_{1}(\mathbf{x})=\mathbf{y}_{1}+L_{1} \mathbf{x}, \quad \text { and } \quad T_{2}(\mathbf{x})=\mathbf{y}_{2}+L_{2} \mathbf{x} .
$$

The derivatives of these affine maps are $D T_{1}=L_{1}$ and $D T_{2}=L_{2}$. What is the derivative of $T_{3}=T_{2} \circ T_{1}$?

$$
\begin{aligned}
T_{3}(\mathbf{x})=\left(T_{2} \circ T_{1}\right)(\mathbf{x}) & =T_{2}\left(T_{1}(\mathbf{x})\right) \\
& =T_{2}\left(\mathbf{y}_{1}+L_{1} \mathbf{x}\right) \\
& =\mathbf{y}_{2}+L_{2}\left(\mathbf{y}_{1}+L_{1} \mathbf{x}\right) \\
& =\mathbf{y}_{2}+L_{2} \mathbf{y}_{1}+L_{2} L_{1} \mathbf{x} \\
& =\mathbf{y}_{3}+L_{3} \mathbf{x}
\end{aligned}
$$

where $\mathbf{y}_{3}=\mathbf{y}_{2}+L_{2} \mathbf{y}_{1}$ and $L_{3}=L_{2} L_{1}$ and so $D\left(T_{2} \circ T_{1}\right)=L_{2} L_{1}$.
So the composition of two affine maps is an affine map and the derivative of the composition is the the product of the derivatives.

Chain rule

Consider some differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ with best affine approximations T_{1} and T_{2}.

It seems plausible that $g \circ f$ is differentiable with best affine approximation $T_{2} \circ T_{1}$. In that case we would have, $D(g \circ f)=D g D f$.

Theorem (Chain rule)

Suppose $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \Omega^{\prime} \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$, with $f(\Omega) \subset \Omega^{\prime}$. If f and g are differentiable, then so is $g \circ f: \Omega \rightarrow \mathbb{R}^{p}$ and

$$
D_{\mathbf{a}}(g \circ f)=D_{f(\mathbf{a})} g D_{\mathbf{a}} f,
$$

or alternatively,

$$
D(g \circ f)(\mathbf{a})=D g(f(\mathbf{a})) D f(\mathbf{a})
$$

See Marsden and Tromba for a proof in the case when $D f$ and $D g$ are continuous and the Marsden and Tromba internet supplement for a more general proof.

Chain rule

Example

Let

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{*}
\end{equation*}
$$

and $g(x, y)=x y^{2}$. What is $\frac{\partial g}{\partial r}$?
Since we have explicit expressions, we could calculate directly as

$$
\frac{\partial}{\partial r} g(x(r, \theta), y(r, \theta))=\frac{\partial}{\partial r}\left(r \cos \theta r^{2} \sin ^{2} \theta\right)=3 r^{2} \cos \theta \sin ^{2} \theta,
$$

or we could use the chain rule:

$$
\frac{\partial g}{\partial r}=\frac{\partial g}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial g}{\partial y} \frac{\partial y}{\partial r}=y^{2} \cos \theta+2 x y \sin \theta=3 r^{2} \cos \theta \sin ^{2} \theta .
$$

How does this come from the chain rule stated on the previous slide?
Note that $(*)$ is really a map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and g as a function of r and θ is really $g \circ f$.

Chain rule

We have $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(r, \theta)=\left(f_{1}(r, \theta), f_{2}(r, \theta)\right)=(r \cos \theta, r \sin \theta) \Rightarrow D f=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial r} & \frac{\partial f_{1}}{\partial \theta} \\
\frac{\partial f_{2}}{\partial r} & \frac{\partial f_{2}}{\partial \theta}
\end{array}\right)
$$

and

$$
g(x, y)=x y^{2} \Rightarrow D g=\left(\begin{array}{ll}
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right) .
$$

So, the derivative of $g \circ f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is

$$
\left.\begin{array}{c}
D(g \circ f)=D g D f=\left(\begin{array}{ll}
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right)\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial r} & \frac{\partial f_{1}}{\partial \theta} \\
\frac{\partial f_{2}}{\partial r} & \frac{\partial f_{2}}{\partial \theta}
\end{array}\right) \\
\quad=\left(\frac{\partial g}{\partial x} \frac{\partial f_{1}}{\partial r}+\frac{\partial g}{\partial y} \frac{\partial f_{2}}{\partial r}\right.
\end{array} \frac{\partial g}{\partial x} \frac{\partial f_{1}}{\partial \theta}+\frac{\partial g}{\partial y} \frac{\partial f_{2}}{\partial \theta}\right), ~ \$
$$

Chain rule

Suppose

$$
z=e^{x^{2}+y} \quad \text { and } \quad x=\cos t, y=\sin t .
$$

Find $\frac{d z}{d t}$ at $t=0$.

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}=e^{x^{2}+y} 2 x(-\sin t)+e^{x^{2}+y} \cos t
$$

At $t=0$,

$$
x=1, \quad y=0
$$

so

$$
\left.\frac{d z}{d t}\right|_{t=0}=e^{1+0} \cdot 2 \cdot 1 \cdot 0+e^{1+0} \cdot 1=e .
$$

Chain rule

Define

$$
\begin{array}{lr}
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, & f(x, y)=e^{x^{2}+y}, \\
g: \mathbb{R} \rightarrow \mathbb{R}^{2}, & g(t)=(\cos t, \sin t) .
\end{array}
$$

Both f and g are differentiable because the partial derivatives of their components exist and are continuous everywhere.

$$
\begin{gathered}
D f=J f=\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right), \quad D g=J g=\binom{\frac{\partial g_{1}}{\partial t}}{\frac{\partial g_{2}}{\partial t}}=\binom{\frac{d g_{1}}{d t}}{\frac{d g_{2}}{d t}} . \\
D(f \circ g)=J(f \circ g)=J f J g=\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right)\binom{\frac{d g_{1}}{d t}}{\frac{d g_{2}}{d t}}=\frac{\partial f}{\partial x} \frac{d g_{1}}{d t}+\frac{\partial f}{\partial y} \frac{d g_{2}}{d t} .
\end{gathered}
$$

Chain rule

Suppose f depends on x, y, z and w and x, y, z and w depend on r, s and t. Write out the chain rule for $\frac{\partial f}{\partial s}$.

$$
\begin{aligned}
\frac{\partial f}{\partial s} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial s}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial s}+\frac{\partial f}{\partial w} \frac{\partial w}{\partial s} \\
\frac{\partial f}{\partial r} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial r}+\frac{\partial f}{\partial w} \frac{\partial w}{\partial r} \\
\frac{\partial f}{\partial t} & =\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}+\frac{\partial f}{\partial w} \frac{\partial w}{\partial t}
\end{aligned}
$$

[Of course we are assuming differentiability of the underlying maps.]

Chain rule

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
F(x, y)=g\left(3 x-4 y^{2}\right) .
$$

Show that any such function F must be a solution of the PDE

$$
\begin{equation*}
8 y \frac{\partial F}{\partial x}+3 \frac{\partial F}{\partial y}=0 \tag{*}
\end{equation*}
$$

Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $h(x, y)=3 x-4 y^{2}$. So $F=g \circ h$ and

$$
\begin{gathered}
\left(\begin{array}{ll}
\frac{\partial F}{\partial x} & \frac{\partial F}{\partial y}
\end{array}\right)=D_{(x, y)} F=D_{h(x, y)} g D_{(x, y)} h \\
=\left(g^{\prime}\left(3 x-4 y^{2}\right)\right)\left(\begin{array}{ll}
\frac{\partial h}{\partial x} & \frac{\partial h}{\partial y}
\end{array}\right)=g^{\prime}\left(3 x-4 y^{2}\right)(3-8 y)
\end{gathered}
$$

So

$$
\frac{\partial F}{\partial x}=3 g^{\prime}\left(3 x-4 y^{2}\right) \quad \text { and } \quad \frac{\partial F}{\partial y}=-8 y g^{\prime}\left(3 x-4 y^{2}\right)
$$

and it is now easy to check that F satisfies $(*)$.

Directional derivative

For $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, the partial derivative $\frac{\partial f}{\partial x_{i}}$ measures the rate of change of f in the x_{i}-direction.

We can also ask for the rate of change in a non-coordinate direction.

Definition

The directional derivative of $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ in the direction of the unit vector $\hat{\mathbf{u}}$ at $\mathbf{a} \in \Omega$ is

$$
D_{\hat{\mathbf{u}}} f(\mathbf{a})=f_{\hat{\mathbf{u}}}^{\prime}(\mathbf{a})=\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+t \hat{\mathbf{u}})-f(\mathbf{a})}{t}
$$

Directional derivatives

Let $\mathbf{r}: I \subset \mathbb{R} \rightarrow \mathbb{R}^{n}$ (with 0 an interior point of I) be given by $\mathbf{r}(t)=\mathbf{a}+t \hat{\mathbf{u}}$. Then the directional derivative of f at \mathbf{a} in the direction $\hat{\mathbf{u}}$ is

$$
D_{\hat{\mathbf{u}}} f(\mathbf{a})=f_{\hat{\mathbf{u}}}^{\prime}(\mathbf{a})=\lim _{t \rightarrow 0} \frac{f(\mathbf{r}(t))-f(\mathbf{r}(0))}{t} .
$$

If we write $F=f \circ \mathbf{r}$ then

$$
f_{\hat{\mathbf{u}}}^{\prime}(\mathbf{a})=\lim _{t \rightarrow 0} \frac{F(t)-F(0)}{t}=F^{\prime}(0) .
$$

For differentiable f, the chain rule says

$$
F^{\prime}(0)=D f(\mathbf{a}) \operatorname{Dr}(0)=\nabla f(\mathbf{a}) \cdot \hat{\mathbf{u}} .
$$

Theorem

Suppose $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a and that $\hat{\mathbf{u}}$ is a unit vector. Then $f_{\hat{u}}^{\prime}(\mathbf{a})$ exists and

$$
f_{\hat{\mathbf{u}}}^{\prime}(\mathbf{a})=\nabla f(\mathbf{a}) \cdot \hat{\mathbf{u}} .
$$

Directional derivatives

For a differentiable function f, the Cauchy-Schwarz inequality gives

$$
\left\|f_{\hat{\mathbf{u}}}^{\prime}(\mathbf{a})\right\|=\|\hat{\mathbf{u}} \cdot \nabla f(\mathbf{a})\| \leq\|\hat{\mathbf{u}}\|\|\nabla f(\mathbf{a})\|=\|\nabla f(\mathbf{a})\| .
$$

Equality occurs when $\hat{\mathbf{u}}$ is proportional to $\nabla f(\mathbf{a})$.

- The maximum rate of change of f at a occurs in the direction of $\nabla f(\mathbf{a})$.
- The minimum rate of change of f at a occurs in the direction of $-\nabla f(\mathbf{a})$.
Also,

$$
f_{\hat{\mathbf{u}}}^{\prime}(\mathbf{a})=0 \Leftrightarrow \hat{\mathbf{u}} \perp \nabla f(\mathbf{a}) .
$$

Directions normal to $\nabla f(\mathbf{a})$ are directions in which f is not changing,
 that is, tangent to a level set of f.

Directional derivatives

Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y)=x^{2}+y^{2}
$$

(a) Find ∇f.
(b) Sketch some level curves of f
(c) Indicate ∇f at some points on these curves.
(a) $\nabla f=(2 x, 2 y)$.
(b) The level curves
$f(x, y)=1,2,3,4,5,6,7$ are plotted below.

Directional derivatives

Find the directional derivative of f in the direction $(5,1)$ at the point $(2,1)$ where

$$
f(x, y)=x^{3}+2 y^{2} .
$$

The function f is differentiable because its partial derivatives exist and are continuous and so we can calculate the directional derivative using the gradient vector.

$$
\nabla f=\left(3 x^{2}, 4 y\right) \quad \Rightarrow \quad \nabla f(2,1)=(12,4) .
$$

A unit vector in the direction $(5,1)$ is

$$
\hat{\mathbf{u}}=\frac{1}{\sqrt{26}}(5,1)
$$

so

$$
f_{\hat{\mathbf{u}}}^{\prime}(2,1)=\hat{\mathbf{u}} \cdot \nabla f(2,1)=\frac{1}{\sqrt{26}}(5,1) \cdot(12,4)=\frac{64}{\sqrt{26}} .
$$

Tangent planes

Consider the surface in \mathbb{R}^{3} defined by the equation

$$
\phi(x, y, z)=c
$$

for some constant c and differentiable function ϕ and let

$$
\mathbf{r}(t)=(f(t), g(t), h(t))
$$

be a differentiable curve lying in the surface with tangent vector given by

$$
\mathbf{r}^{\prime}(t)=\left(f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right)
$$

Since all points along $\mathbf{r}(t)$ lie in the surface,
$\phi(f(t), g(t), h(t))=c \Rightarrow(\phi \circ \mathbf{r})(t)=c \Rightarrow D_{\mathbf{r}(t)} \phi D_{t} \mathbf{r}=0 \Rightarrow \nabla \phi \cdot \mathbf{r}^{\prime}(t)=0$.
Hence all curves passing through a point P on the surface have tangent vector normal to $\nabla \phi$ and so they all lie in a common plane called the tangent plane at P.

Tangent planes

Find the tangent plane to the surface

$$
x^{2}+y^{2}+z^{2}=6
$$

at the point $(1,2,-1)$.
The surface is

$$
\phi(x, y, z)=6
$$

where $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is the differentiable function given by

$$
\phi(x, y, z)=x^{2}+y^{2}+z^{2} .
$$

So a normal to the tangent plane at (x, y, z) on the surface is

$$
\nabla \phi=(2 x, 2 y, 2 z) .
$$

At $(1,2,-1)$ the normal is

$$
\nabla \phi(1,2,-1)=(2,4,-2)
$$

and hence an equation for the tangent plane at $(1,2,-1)$ is

$$
2 x+4 y-2 z=12 .
$$

Tangent lines

Find the tangent line to the curve

$$
3 x^{2}+2 y^{2}=14
$$

at the point $(2,1)$.
The curve is $\phi(x, y)=14$ with $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a differentiable function given by

$$
\phi(x, y)=3 x^{2}+2 y^{2} .
$$

A normal at (x, y) on the curve is $\nabla \phi=(6 x, 4 y)$ and at $(2,1)$,

$$
\nabla \phi(2,1)=(12,4) .
$$

Hence a Cartesian equation for the tangent line is

$$
12 x+4 y=28
$$

Note that we don't need to solve for y to find the tangent line.
[Exercise: check using a 'first year' method with $y=\sqrt{7-\frac{3}{2} x^{2}}$.]

Tangent planes

Consider the surface S_{1} in \mathbb{R}^{3} defined by

$$
S_{1}=\left\{(x, y, z): x^{3}+2 y^{2}-z=0\right\} .
$$

At the point $(2,1,10)$ find
(i) a parametric equation of the normal line and
(ii) a Cartesian equation of the tangent plane.

The surface is the 0 level set of the differentiable function $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $\phi(x, y, z)=x^{3}+2 y^{2}-z$.

So a normal to the surface at (x, y, z) is given by $\nabla \phi=\left(3 x^{2}, 4 y^{2},-1\right)$ and at $(2,1,10)$ by $\nabla \phi(2,1,10)=(12,4,-1)$.
(i) $\mathbf{r}(t)=(2,1,10)+t(12,4,-1), \quad t \in \mathbb{R}$.
(ii) $12 x+4 y-z=18$.

Tangent planes

Find the best affine approximation to $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $f(x, y)=x^{3}+2 y^{2}$ at the point $(2,1)$ and compare this with the equation of the tangent plane to S_{1}.

The partial derivatives of f exist and are continuous everywhere. So f is differentiable and

$$
D f=J f=\left(3 x^{2} \quad 4 y\right) \quad \text { or } \quad \nabla f=\left(3 x^{2}, 4 y\right) .
$$

The best affine approximation at $(2,1)$ is

$$
\begin{aligned}
T(x, y) & =f(2,1)+\nabla f(2,1) \cdot(x-2, y-1) \\
& =10+(12,4) \cdot(x-2, y-1) \\
& =10+12(x-2)+4(y-1) \\
& =-18+12 x+4 y .
\end{aligned}
$$

Note that the graph of T give by $z=T(x, y)$ is

$$
z=-18+12 x+4 y \quad \Rightarrow \quad 12 x+4 y-z=18
$$

Tangent planes

Find the curves obtained by the intersection of $S_{1}=\left\{(x, y, z): x^{3}+2 y^{2}-z=0\right\}$ with the planes (i) $x=2$, and (ii) $y=1$.

Find the tangent vectors to these curves at the point $(2,1,10)$ and hence give a parametric equation for the tangent plane to S_{1} at $(2,1,10)$.
(i) $\mathbf{r}_{1}(t)=\left(2, t, 8+2 t^{2}\right)$,
$\mathbf{r}_{1}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.
(ii) $\mathbf{r}_{2}(t)=\left(t, 1, t^{3}+2\right)$
$\mathbf{r}_{2}: \mathbb{R} \rightarrow \mathbb{R}^{3}$.

Tangent vectors to the curves are

$$
\mathbf{r}_{1}^{\prime}(t)=(0,1,4 t), \quad \text { and } \quad \mathbf{r}_{2}^{\prime}(t)=\left(1,0,3 t^{2}\right)
$$

and at $(2,1,10)$ these are

$$
\mathbf{r}_{1}^{\prime}(1)=(0,1,4), \quad \text { and } \quad \mathbf{r}_{2}^{\prime}(2)=(1,0,12) .
$$

So the tangent plane is given by

$$
\mathbf{r}(s, t)=(2,1,10)+t(0,1,4)+s(1,0,12) .
$$

Tangent planes

Consider $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with

$$
g(x, y, z)=3 x^{2}-24 x+3 y^{2}-10 y+3 z^{2}-59 z+333
$$

and the surface S_{2} defined as the 0 level set of g, that is,

$$
S_{2}=\{(x, y, z): g(x, y, z)=0\} .
$$

(i) Describe S_{2}.
(ii) Show that S_{2} touches S_{1} tangentially at $(2,1,10)$.
(iii) Solve $g(x, y, z)=0$ for z in terms of x and y for (x, y) "near" $(2,1)$.
[That is find $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $z=f(x, y)$ near (2,1).]
(iv) Find the best affine approximation to f near $(2,1)$.
(v) What fact involving ∇g makes it possible to find f ?

Tangent planes

(i)

$$
g(x, y, z)=3 x^{2}-24 x+3 y^{2}-10 y+3 z^{2}-59 z+333
$$

and

$$
S_{2}=\left\{(x, y, z): 3 x^{2}-24 x+3 y^{2}-10 y+3 z^{2}-59 z+333=0\right\} .
$$

Completing the squares x, y and z,

$$
g(x, y, z)=3(x-4)^{2}+3\left(y-\frac{5}{2}\right)^{2}+3\left(z-\frac{59}{6}\right)^{2}-\frac{143}{6} .
$$

So S_{2} is implicitly defined by the equation

$$
3(x-4)^{2}+3\left(y-\frac{5}{2}\right)^{2}+3\left(z-\frac{59}{6}\right)^{2}=\frac{143}{6}
$$

which is a sphere of radius $\sqrt{\frac{143}{18}}$ centred at $\left(4, \frac{5}{2}, \frac{59}{6}\right)$.

Tangent planes

(ii)

$$
g(x, y, z)=3 x^{2}-24 x+3 y^{2}-10 y+3 z^{2}-59 z+333
$$

and

$$
S_{2}=\left\{(x, y, z): 3 x^{2}-24 x+3 y^{2}-10 y+3 z^{2}-59 z+333=0\right\}
$$

First check that $g(2,1,10)=0$ so that $(2,1,10)$ lies on S_{2}.
[We previously found that a normal to the tangent plane of S_{1} at $(2,1,10)$ was $\nabla \phi(2,1,10)=(12,4,-1)$.]

Now, a normal to the tangent plane of S_{2} is given by

$$
\nabla g=\left(6(x-4), 6\left(y-\frac{5}{3}\right), 6\left(z-\frac{59}{6}\right)\right) \quad \Rightarrow \quad \nabla g(2,1,10)=(-12,-4,1)
$$

Since one normal is a multiple of the other, the two tangent planes are parallel.

Tangent planes

(iii)

$$
g(x, y, z)=3 x^{2}-24 x+3 y^{2}-10 y+3 z^{2}-59 z+333
$$

and

$$
\begin{gathered}
S_{2}=\left\{(x, y, z): 3 x^{2}-24 x+3 y^{2}-10 y+3 z^{2}-59 z+333=0\right\} . \\
3(x-4)^{2}+3\left(y-\frac{5}{2}\right)^{2}+3\left(z-\frac{59}{6}\right)^{2}-\frac{143}{6}=0 \\
\Rightarrow \quad 3\left(z-\frac{59}{6}\right)^{2}=\frac{143}{6}-3(x-4)^{2}-3\left(y-\frac{5}{2}\right)^{2} \\
\Rightarrow \quad z=\frac{59}{6}+\sqrt{\frac{143}{18}-(x-4)^{2}-\left(y-\frac{5}{2}\right)^{2}}
\end{gathered}
$$

(iv)

The best affine approximation is given by the tangent plane that has already been found.

$$
T(x, y)=10+12(x-2)+4(y-1) .
$$

Taylor series

Taylor's theorem says for a suitably continuous and differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=P_{n, a}(x)+R_{n, a}(x)
$$

where $P_{n, a}(x)$ is the polynomial

$$
P_{n, a}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

and the remainder $R_{n, a}(x)$ is

$$
R_{n, a}(x)=\frac{1}{(n+1)!} f^{(n+1)}(z)(x-a)^{n+1}
$$

for some z between x and a. When $R_{n, a}(x)$ is "small enough",

$$
f(x) \simeq P_{n, a}(x)
$$

and $P_{0, a}(x), P_{1, a}(x), P_{2, a}(x), P_{3, a}(x), \ldots$ are the the best constant, affine, quadratic, cubic, \ldots approximations to $f(x)$.

Taylor series

Taylor's theorem can be generalised to $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Consider $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and try to write $f(x, y)$ in terms of f and it's derivatives at (a, b). Let

$$
g(t)=f(u, v), \quad u=a+t(x-a), v=b+t(y-b) .
$$

(a, b)

For g continuous on $[0, t]$, Taylor's theorem says

$$
g(t)=g(0)+R_{0}(t) \quad \text { where } \quad R_{0}(t)=g^{\prime}\left(z_{0}\right) t
$$

for some z_{0} between 0 and t provided g is differentiable on $[0, t]$, and

$$
g(t)=g(0)+g^{\prime}(0) t+R_{1}(t) \quad \text { where } \quad R_{1}(t)=\frac{1}{2!} g^{\prime \prime}\left(z_{1}\right) t^{2}
$$

for some z_{1} between 0 and t provided g^{\prime} is differentiable on $[0, t]$, and

$$
g(t)=g(0)+g^{\prime}(0) t+\frac{1}{2!} g^{\prime \prime}(0) t^{2}+R_{2}(t) \quad \text { where } \quad R_{2}(t)=\frac{1}{3!} g^{\prime \prime \prime}\left(z_{2}\right) t^{3}
$$

for some z_{2} between 0 and t provided $g^{\prime \prime}$ is differentiable on $[0, t]$, and so on.

Taylor series

$$
\begin{gathered}
\begin{array}{c}
u=a+t(x-a), \quad v=b+t(y-b) \Rightarrow \quad \Rightarrow \quad \frac{d u}{d t}=x-a, \frac{d v}{d t}=y-b . \\
g(t)=f(u, v) \quad \begin{array}{r}
g^{\prime}(t)
\end{array}=f_{1}(u, v) \frac{d u}{d t}+f_{2}(u, v) \frac{d v}{d t} \\
=f_{1}(u, v)(x-a)+f_{2}(u, v)(y-b)
\end{array} \\
\begin{array}{r}
g^{\prime \prime}(t)=\frac{d}{d t}\left(f_{1}(u, v)(x-a)+f_{2}(u, v)(y-b)\right) \\
=\left(f_{11}(u, v) \frac{d u}{d t}+f_{12}(u, v) \frac{d v}{d t}\right)(x-a) \\
\\
+\left(f_{21}(u, v) \frac{d u}{d t}+f_{22}(u, v) \frac{d v}{d t}\right)(y-b)
\end{array} \\
=f_{11}(u, v)(x-a)^{2}+2 f_{12}(u, v)(x-a)(y-b)+f_{22}(u, v)(y-b)^{2} \\
g^{\prime \prime \prime}(t)=f_{111}(u, v)(x-a)^{3}+3 f_{112}(u, v)(x-a)^{2}(y-b)+3 f_{122}(u, v)(x-a)(y-b)^{2} \\
\\
+f_{222}(u, v)(y-b)^{3} .
\end{gathered}
$$

Taylor series

$$
u=a+t(x-a), \quad v=b+t(y-b) \quad \text { and } \quad g(t)=f(u, v) .
$$

Recall that the $0^{\text {th }}$ order form of Taylor's theorem (MVT) says, for g continuous on $[0, t]$ and differentiable on $(0, t)$,

$$
g(t)=g(0)+R_{0}(t) \quad \text { where } \quad R_{0}(t)=g^{\prime}\left(z_{0}\right) t .
$$

Now, using

$$
g(t)=f(u, v), \quad g^{\prime}(t)=f_{1}(u, v)(x-a)+f_{2}(u, v)(y-b)
$$

gives the multivariable version

$$
\begin{aligned}
f(x, y)=g(1) & =P_{0}(1)+R_{0}(1) \\
& =f(a, b)+f_{1}\left(c_{0}, d_{0}\right)(x-a)+f_{2}\left(c_{0}, d_{0}\right)(y-b)
\end{aligned}
$$

for some $\left(c_{0}, d_{0}\right)$ on the line segment between (a, b) and (x, y).
$\left[\left(c_{0}, d_{0}\right)=\left(a+z_{0}(x-a), b+z_{0}(y-b)\right)\right]$

Taylor series

The $1^{\text {st }}$ order form of Taylor's theorem says, for g^{\prime} continuous on $[0, t]$ and g^{\prime} differentiable on $(0, t)$,

$$
g(t)=g(0)+g^{\prime}(0) t+R_{1}(t) \quad \text { where } \quad R_{1}(t)=\frac{1}{2!} g^{\prime \prime}\left(z_{1}\right) t^{2}
$$

Now, using

$$
\begin{gathered}
g(t)=f(u, v), \quad g^{\prime}(t)=f_{1}(u, v)(x-a)+f_{2}(u, v)(y-b) \\
g^{\prime \prime}(t)=f_{11}(u, v)(x-a)^{2}+2 f_{12}(u, v)(x-a)(y-b)+f_{22}(u, v)(y-b)^{2}
\end{gathered}
$$

gives the multivariable version

$$
\begin{aligned}
f(x, y)=g(1)= & P_{1}(1)+R_{1}(1) \\
= & f(a, b)+f_{1}(a, b)(x-a)+f_{2}(a, b)(y-b) \\
& +\frac{1}{2}\left(f_{11}\left(c_{1}, d_{1}\right)(x-a)^{2}+2 f_{12}\left(c_{1}, d_{1}\right)(x-a)(y-b)\right. \\
& \left.\quad+f_{22}\left(c_{1}, d_{1}\right)(y-b)^{2}\right)
\end{aligned}
$$

for some $\left(c_{1}, d_{1}\right)$ on the line segment between (a, b) and (x, y).
$\left[\left(c_{1}, d_{1}\right)=\left(a+z_{1}(x-a), b+z_{1}(y-b)\right)\right]$

Taylor series

Taylor's theorem says, for $g^{\prime \prime}$ continuous on $[0, t]$ and $g^{\prime \prime}$ differentiable on $(0, t)$,

$$
\begin{aligned}
g(t)= & g(0)+g^{\prime}(0) t+\frac{1}{2!} g^{\prime \prime}(0) t^{2}+R_{2}(t) \quad \text { where } \quad R_{2}(t)=\frac{1}{3!} g^{\prime \prime \prime}\left(z_{2}\right) t^{3} . \\
g(t) & =f(u, v), \quad g^{\prime}(t)=f_{1}(u, v)(x-a)+f_{2}(u, v)(y-b) \\
g^{\prime \prime}(t)= & f_{11}(u, v)(x-a)^{2}+2 f_{12}(u, v)(x-a)(y-b)+f_{22}(u, v)(y-b)^{2} \\
g^{\prime \prime \prime}(t) & =f_{111}(u, v)(x-a)^{3}+3 f_{112}(u, v)(x-a)^{2}(y-b) \\
& +3 f_{122}(u, v)(x-a)(y-b)^{2}+f_{222}(u, v)(y-b)^{3} .
\end{aligned}
$$

gives the multivariable version (for some $\left(c_{2}, d_{2}\right)$ between (a, b) and (x, y)),

$$
\begin{aligned}
f(x, y)= & g(1)=P_{2}(1)+R_{2}(1) \\
= & f(a, b)+f_{1}(a, b)(x-a)+f_{2}(a, b)(y-b)+\frac{1}{2}\left(f_{11}(a, b)(x-a)^{2}\right. \\
& \left.+2 f_{12}(a, b)(x-a)(y-b)+f_{22}(a, b)(y-b)^{2}\right) \\
& +\frac{1}{3!}\left(f_{111}\left(c_{2}, d_{2}\right)(x-a)^{3}+3 f_{112}\left(c_{2}, d_{2}\right)(x-a)^{2}(y-b)\right. \\
& \left.+3 f_{122}\left(c_{2}, d_{2}\right)(x-a)(y-b)^{2}+f_{222}\left(c_{2}, d_{2}\right)(y-b)^{3}\right) .
\end{aligned}
$$

Taylor series

Definition

$f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{r} on an open set $\Omega \subset \mathbb{R}^{n}$ if all partial derivatives of f of order $\leq r$ exist and are continuous.

Theorem (Taylor's Theorem)

Let $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{r} on the open set Ω. Let $\mathbf{a} \in \Omega$ be such that the line segment joining \mathbf{a} and \mathbf{x} lies in Ω. Then

$$
f(\mathbf{x})=P_{r, \mathbf{a}}(\mathbf{x})+R_{r, \mathbf{a}}(\mathbf{x})
$$

where, for some point \mathbf{z} on the line segment joining \mathbf{x} and \mathbf{a},

$$
P_{r, \mathbf{a}}(\mathbf{x})=f(\mathbf{a})+\sum_{k=1}^{r-1} \frac{1}{k!} D^{k} f(\mathbf{a}) \cdot(\mathbf{x}-\mathbf{a})^{k}, \quad R_{r, \mathbf{a}}(\mathbf{x})=\frac{1}{r!} D^{r} f(\mathbf{z}) \cdot(\mathbf{x}-\mathbf{a})^{r}
$$

Note that the $D^{r} f(\mathbf{z}) \cdot(\mathbf{x}-\mathbf{a})^{r}$ is not a dot product. It represents the terms that we have found in the last few slides and their generalisations.

Taylor series

Find the Taylor polynomial of order 2 about $\left(1,-\frac{\pi}{2}\right)$ for $f(x, y)=\sin \left(x^{2} y\right)$.

$$
\begin{aligned}
& \begin{array}{rl|c}
& \text { at }\left(1,-\frac{\pi}{2}\right) \\
\hline f(x, y) & =\sin \left(x^{2} y\right) & -1 \\
f_{x}(x, y) & =2 x y \cos \left(x^{2} y\right) & 0 \\
f_{y}(x, y) & =x^{2} \cos \left(x^{2} y\right) & 0 \\
f_{x x}(x, y) & =2 y \cos \left(x^{2} y\right)-4 x^{2} y^{2} \sin \left(x^{2} y\right) & \pi^{2} \\
f_{x y}(x, y) & =2 x \cos \left(x^{2} y\right)-2 x^{3} y \sin \left(x^{2} y\right) & -\pi \\
f_{y y}(x, y) & =-x^{4} \sin \left(x^{2} y\right) & 1
\end{array} \\
& P_{2,\left(1,-\frac{\pi}{2}\right)}(x, y)=-1+0(x-1)+0\left(y-\left(-\frac{\pi}{2}\right)\right)+\frac{1}{2}\left(\pi^{2}(x-1)^{2}\right. \\
& \left.+2(-\pi)(x-1)\left(y-\left(-\frac{\pi}{2}\right)\right)+\left(y-\left(-\frac{\pi}{2}\right)\right)^{2}\right) \\
& =-1+\frac{\pi^{2}}{2}(x-1)^{2}-\pi(x-1)\left(y-\left(-\frac{\pi}{2}\right)\right)+\frac{1}{2}\left(y-\left(-\frac{\pi}{2}\right)\right)^{2} .
\end{aligned}
$$

Taylor series

Find the Taylor polynomial of order 2 about $(4,8)$ for $f(x, y)=\sqrt{x} \sqrt[3]{y}$.

$$
\begin{gathered}
\\
\\
\hline f(x, y)=x^{\frac{1}{2}} y^{\frac{1}{3}} \\
f_{x}(x, y)=\frac{1}{2} x^{-\frac{1}{2}} y^{\frac{1}{3}} \\
f_{y}(x, y)=\frac{1}{3} x^{\frac{1}{2}} y^{-\frac{2}{3}} \\
f_{x x}(x, y)=-\frac{1}{4} x^{-\frac{3}{2}} y^{\frac{1}{3}} \\
f_{x y}(x, y)=\frac{1}{6} x^{-\frac{1}{2}} y^{-\frac{2}{3}} \\
f_{y y}(x, y)=-\frac{1}{16} \\
\frac{1}{48} \\
P_{2,(4,8)}(x, y)=4 x^{\frac{1}{2}} y^{-\frac{5}{3}} \\
4+\frac{1}{72}
\end{gathered}
$$

Taylor series

Use Taylor polynomials for $\sqrt{x} \sqrt[3]{y}$ about the point $(4,8)$ to approximate to $\sqrt{3.98} \sqrt[3]{8.03}$ using
(i) the constant and linear terms, and
(ii) terms up to second order.
(i) $f(3.98,8.03) \simeq P_{1,(4,8)}(3.98,8.03)$

$$
\begin{aligned}
& =4+\frac{1}{2}(3.98-4)+\frac{1}{6}(8.03-8) \\
& =3.995
\end{aligned}
$$

(ii) $f(3.98,8.03) \simeq P_{2,(4,8)}(3.98,8.03)$

$$
\begin{aligned}
= & 4+\frac{1}{2}(3.98-4)+\frac{1}{6}(8.03-8)+\frac{1}{2}\left(-\frac{1}{16}(3.98-4)^{2}\right. \\
& \left.+2 \times \frac{1}{48}(3.98-4)(8.03-8)+\left(-\frac{1}{72}\right)(8.03-8)^{2}\right) \\
= & 3.99496875
\end{aligned}
$$

[Maple gives 3.99496873...]

Taylor series

Find the Taylor polynomial of

$$
f(x, y)=\sin x e^{y / 2}
$$

including terms up to order 3 about $(0,0)$.

$$
\begin{aligned}
\sin x e^{y / 2} & =\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)\left(1+\frac{y}{2}+\frac{\left(\frac{y}{2}\right)^{2}}{2!}+\frac{\left(\frac{y}{2}\right)^{3}}{3!}+\frac{\left(\frac{y}{2}\right)^{4}}{4!}+\cdots\right) \\
& =x+\frac{x y}{2}-\frac{x^{3}}{6}+\frac{x y^{2}}{8}+\cdots
\end{aligned}
$$

So,

$$
P_{3,(0,0)}(x, y)=x+\frac{x y}{2}-\frac{x^{3}}{6}+\frac{x y^{2}}{8} .
$$

Maxima, minima and saddle points

Definition

Suppose $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then

- $\mathbf{a} \in \Omega$ is an absolute or global maximum of f if $f(\mathbf{a}) \geq f(\mathbf{x})$ for all $\mathbf{x} \in \Omega$.
- $\mathbf{a} \in \Omega$ is an absolute or global minimum of f if $f(\mathbf{a}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \Omega$.
- $\mathbf{a} \in \Omega$ is a local maximum of f if there is an open set A containing a such that $f(\mathbf{a}) \geq f(\mathbf{x})$ for all $\mathbf{x} \in \Omega \cap A$.
- $\mathbf{a} \in \Omega$ is a local minimum of f if there is an open set A containing a such that $f(\mathbf{a}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \Omega \cap A$.
- $\mathbf{a} \in \Omega$ is a stationary point of f if f is differentiable at \mathbf{a} and $\nabla f(\mathbf{a})=\mathbf{0}$.
- $\mathbf{a} \in \Omega$ is a saddle point of f if it is a stationary point of f but is neither a local maximum nor minimum point of f.

Maxima, minima and saddle points

Theorem

Suppose $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. Then local and maxima and minima can only occur at $\mathbf{a} \in \Omega$ where a satisfies one of the following:
(1) \mathbf{a} is a stationary point,
(2) a lies on the boundary of Ω or
(3) f is not differentiable at \mathbf{a}.

Definition

Points satisfying at least one of (1), (2) or (3) in the theorem above are called critical points.

Maxima, minima and saddle points

Consider Ω, the region of \mathbb{R}^{2} bounded by $x=0, y=0$ and $y=x+3$. Find the maximum and minimum values of $f: \Omega \rightarrow \mathbb{R}$, given by,

$$
f(x, y)=x^{3}-y^{3}-3 x y .
$$

f is continuous and differentiable on Ω which is compact. Hence $f(\Omega)$ is compact and so maximum and minimum values exist and are attained on Ω.

Since f is differentiable everywhere, the extrema must occur at (1) stationary points f or (2) boundary points of Ω.

Stationary points of f occur when

$$
\begin{aligned}
\nabla f=\mathbf{0} \Leftrightarrow & \left(3 x^{2}-3 y,-3 y^{2}-3 x\right)=(0,0) \Leftrightarrow y=x^{2} \text { and } x=-y^{2} \\
& \Rightarrow y=x^{2} \Rightarrow x^{4}+x=0 \Rightarrow\left(x^{3}+1\right) x=0 .
\end{aligned}
$$

Hence the only stationary points of f are $(0,0)$ and $(-1,1)$. Also note that

$$
f(0,0)=0 \quad \text { and } \quad f(-1,1)=1
$$

Maxima, minima and saddle points

Divide the boundary into 3 pieces. First consider B_{1}.

$$
\mathbf{B}_{1}=\{(0, t): 0 \leq t \leq 3\}
$$

On B_{1}

$$
f(0, t)=0^{3}-t^{3}-0=-t^{3}
$$

for $t \in[0,3]$.
So the max on B_{1} is at $(0,0)$ where $f(0,0)=0$ and the min is at $(0,3)$ where $f(0,3)=-27$.

Maxima, minima and saddle points

Next consider B_{2}.
$\mathbf{B}_{1}=\{(0, t): 0 \leq t \leq 3\}$,
$\mathbf{B}_{2}=\{(t, 0):-3 \leq t \leq 0\}$,

On B_{2}

$$
f(t, 0)=t^{3}-0^{3}-0=t^{3}
$$

for $t \in[-3,0]$.
So the max on B_{2} is at $(0,0)$ where $f(0,0)=0$ and the min is at $(-3,0)$ where $f(-3,0)=-27$.

Maxima, minima and saddle points

Lastly consider B_{3}.

$$
\begin{aligned}
& \mathrm{B}_{1}=\{(0, t): 0 \leq t \leq 3\} \\
& \mathrm{B}_{2}=\{(t, 0):-3 \leq t \leq 0\} \\
& \mathbf{B}_{3}=\{(t, t+3):-3 \leq t \leq 0\}
\end{aligned}
$$

On B3
$f(t, t+3)=t^{3}-(t+3)^{3}-3 t(t+3)=-3\left(4 t^{2}+12 t+9\right)$
for $t \in[-3,0]$. Now, $g(t)=f(t, t+3)$ has a stationary point when

$$
8 t+12=0 \Rightarrow t=-\frac{3}{2} .
$$

Extreme values can occur on B_{3} at the end points (already considered) or the stationary point where

$$
f\left(-\frac{3}{2}, \frac{3}{2}\right)=0 .
$$

Maxima, minima and saddle points

So we have a number of candidate points for the extreme values of f.

$$
\begin{aligned}
f(-1,1) & =1 \\
f(0,0) & =0 \\
f(0,3) & =-27 \\
f(-3,0) & =-27 \\
f(-1.5,1.5) & =0
\end{aligned}
$$

Hence the maximum of f on Ω is 1 and the minimum value of f on Ω is -27 .

Classification of stationary points

The following functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ have a stationary point at $(0,0)$.
Is it a local maximum, minimum or saddle point?
(i) $f(x, y)=x^{2}+y^{2}$
(ii) $f(x, y)=-x^{2}-y^{2}$
(iii) $f(x, y)=x^{2}-y^{2}$
(iv) $f(x, y)=x y$
(v) $f(x, y)=x^{2}+y^{4}$
(vi) $f(x, y)=x^{2}-y^{4}$
(vii) $f(x, y)=x^{2}-6 x y+y^{2}$
(viii) $f(x, y)=3 x^{2}-2 x y+3 y^{2}$

Classification of stationary points

(i) $f(x, y)=x^{2}+y^{2}$

Local minimum at $(0,0)$.
(ii) $f(x, y)=-x^{2}-y^{2}$

Local maximum at $(0,0)$.

Classification of stationary points

(iii) $f(x, y)=x^{2}-y^{2}$

Along $y=0, f(x, 0)=x^{2}$ and $(0,0)$ is a local minimum.
Along $x=0, f(0, y)=-y^{2}$ and $(0,0)$ is a local maximum.

For all $\epsilon>0$,

$$
\left(\frac{\epsilon}{2}, 0\right) \in B((0,0), \epsilon) \text { with } f\left(\frac{\epsilon}{2}, 0\right)=\frac{\epsilon^{2}}{4}
$$

and

$$
\left(0, \frac{\epsilon}{2}\right) \in B((0,0), \epsilon) \text { with } f\left(0, \frac{\epsilon}{2}\right)=-\frac{\epsilon^{2}}{4}
$$

So,

$$
f\left(0, \frac{\epsilon}{2}\right)<f(0,0)<f\left(\frac{\epsilon}{2}, 0\right) .
$$

That is, $(0,0)$ is a stationary point that is neither a local max nor min and hence is a saddle point.

Classification of stationary points

(iv) $f(x, y)=x y$

Along $y=x$,

$$
f(x, x)=x^{2}
$$

which has a local minimum at $(0,0)$.
Along $y=-x$,

$$
f(x,-x)=-x^{2}
$$

which has a local maximum at $(0,0)$. So $(0,0)$ is neither a local maximum nor local minimum. Hence f has a saddle point at $(0,0)$.
Note that

$$
f(x, y)=\frac{1}{4}\left((x+y)^{2}-(x-y)^{2}\right) .
$$

Classification of stationary points

(v) $f(x, y)=x^{2}+y^{4}$

Local minimum at $(0,0)$.
(iv) $f(x, y)=x^{2}-y^{4}$

Saddle point at $(0,0)$.

Classification of stationary points

(vii) $f(x, y)=x^{2}-6 x y+y^{2}$

Saddle point at $(0,0)$.
(viii) $f(x, y)=3 x^{2}-2 x y+3 y^{2}$

Local minimum at $(0,0)$.

Classification of stationary points

(vii)

$$
\begin{aligned}
f(x, y) & =x^{2}-6 x y+y^{2} \\
& =\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right)\binom{x}{y} .
\end{aligned}
$$

Let

$$
H=\left(\begin{array}{cc}
1 & -3 \\
-3 & 1
\end{array}\right)
$$

H has eigenvalues and eigenvectors

$$
\begin{array}{ll}
\lambda_{1}=-2, & \mathbf{v}_{1}=\binom{1}{1} \\
\lambda_{2}=4, & \mathbf{v}_{2}=\binom{-1}{1}
\end{array}
$$

So

$$
P^{T} H P=D=\left(\begin{array}{cc}
-2 & 0 \\
0 & 4
\end{array}\right)
$$

Now make a change of variables

$$
\binom{x}{y}=P\binom{X}{Y} .
$$

So we can orthoganally diagonalise H.

Classification of stationary points

$$
\binom{x}{y}=P\binom{X}{Y} . \quad \Rightarrow \quad\left(\begin{array}{ll}
x & y
\end{array}\right)=\left(\begin{array}{ll}
X & Y
\end{array}\right) P^{T}
$$

So,

$$
\begin{aligned}
f(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right) H\binom{x}{y} & =\left(\begin{array}{ll}
X & Y
\end{array}\right) P^{\top} H P\binom{X}{Y} \\
& =\left(\begin{array}{ll}
X & Y
\end{array}\right)\left(\begin{array}{cc}
-2 & 0 \\
0 & 4
\end{array}\right)\binom{X}{Y} \\
& =-2 X^{2}+4 Y^{2}
\end{aligned}
$$

Note that

$$
\binom{X}{Y}=P^{T}\binom{x}{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y}=\binom{\frac{1}{\sqrt{2}}(x+y)}{\frac{1}{\sqrt{2}}(y-x)} .
$$

So,

$$
f(x, y)=-2\left(\frac{1}{\sqrt{2}}(x+y)\right)^{2}+4\left(\frac{1}{\sqrt{2}}(y-x)\right)^{2}=-(x+y)^{2}+2(x-y)^{2} .
$$

Classification of stationary points

(viii)

$$
f(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right)\binom{x}{y}
$$

The eigenvalues and eigenvectors of

$$
H=\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right)
$$

are

$$
\begin{array}{ll}
\lambda_{1}=2, & \mathbf{v}_{1}=\binom{1}{1}, \\
\lambda_{2}=4, & \mathbf{v}_{2}=\binom{-1}{1} .
\end{array}
$$

Diagonalising and rotating the coordinates leads to

$$
f(x, y)=2 X^{2}+4 Y^{2}=(x+y)^{2}+2(x-y)^{2} .
$$

Classification of stationary points

The 'Taylor series' of f at a stationary point (a, b) is

$$
\begin{aligned}
f(x, y)=f(a, b) & +\nabla f(a, b) \cdot((x, y)-(a, b)) \\
& +\frac{1}{2!}(x-a \quad y-b)\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial y \partial x}(a, b) \\
\frac{\partial^{2} f}{\partial x \partial y}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right)\binom{x-a}{y-b} \\
& +\cdots(\text { terms involving higher powers of }(x-a) \text { and }(y-b))
\end{aligned}
$$

since $\nabla f(a, b)=(0,0)$.
For (x, y) close to (a, b) the nature of the stationary point will be determined by the eigenvalues of the matrix

$$
H=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial y \partial x}(a, b) \\
\frac{\partial^{2} f}{\partial x \partial y}(a, b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right) .
$$

Classification of stationary points

Suppose $f: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is C^{2} and has a stationary point at (a, b), that is, $\nabla f(a, b)=0$. So Taylor's theorem says that

$$
f(x, y)=f(a, b)+R_{1,(a, b)}(x, y)
$$

where the remainder term is given by

$$
\begin{aligned}
& R_{1,(a, b)}(x, y)=\frac{1}{2!}\left(\begin{array}{ll}
x-a & y-b
\end{array}\right) H\binom{x-a}{y-b} \\
& \text { where } \quad H=\left(\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(c, d) & \frac{\partial^{2} f}{\partial y \partial x}(c, d) \\
\frac{\partial^{2} f}{\partial x \partial y}(c, d) & \frac{\partial^{2} f}{\partial y^{2}}(c, d)
\end{array}\right)
\end{aligned}
$$

for some point (c, d) between (a, b) and (x, y).
Can the eigenvalues of H be used to determine whether f has a local max, min or saddle point at (a, b) ? H is made of partial derivatives evaluated at an unknown point (c, d). Can we determine the nature of the stationary point using partial derivatives calculated at (a, b) ? Yes, on a sufficiently small ball. Why?

Maxima, minima and saddle points

Definition

For $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ the Hessian of f at \mathbf{a} is the $n \times n$ matrix

$$
H(f, \mathbf{a})=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(\mathbf{a}) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(\mathbf{a}) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(\mathbf{a}) \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(\mathbf{a}) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(\mathbf{a}) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(\mathbf{a}) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(\mathbf{a}) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}}(\mathbf{a}) & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(\mathbf{a})
\end{array}\right) .
$$

Classification of stationary points

The signs of the eigenvalues of

$$
H(f,(a, b))=\left(\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}(a, b) & \frac{\partial^{2} f}{\partial y \partial x}(a, b) \\
\frac{\partial^{2} f}{\partial x \partial y}(a . b) & \frac{\partial^{2} f}{\partial y^{2}}(a, b)
\end{array}\right)
$$

can be determined from the signs of the trace ${ }^{2}$ and determinant of $H(f,(a, b))$.

$$
\operatorname{Tr}(H(f,(a, b)))=\text { sum of eigenvalues }
$$

and

$$
\operatorname{det}(H(f,(a, b)))=\text { product of eigenvalues. }
$$

These are continuous functions of the entries in the matrix which are continuous by the assumption that f is C^{2}. Hence there must be a open ball around (a, b) on which the trace and determinant (and hence the eigenvalues) of the Hessian have the same signs as those of the Hessian at (a, b).

Maxima, minima and saddle points

Find the eigenvalues of the Hessian of f at $(0,0)$ for each of the functions we considered last lecture.

$$
H(f,(0,0))=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(0,0) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(0,0) \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(0,0) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(0,0)
\end{array}\right)
$$

(i) $f(x, y)=x^{2}+y^{2}$
(ii) $f(x, y)=-x^{2}-y^{2}$

$$
H(f,(0,0))=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

Eigenvalues are 2, 2.

$$
H(f,(0,0))=\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right) .
$$

Eigenvalues are $-2,-2$.

Maxima, minima and saddle points

(iii) $f(x, y)=x^{2}-y^{2}$

$$
H(f,(0,0))=\left(\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right) .
$$

Eigenvalues are 2, -2 .
(iv) $f(x, y)=x y$

$$
H(f,(0,0))=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Eigenvalues are $1,-1$.
(v) $f(x, y)=x^{2}+y^{4}$

$$
H(f,(0,0))=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right) .
$$

Eigenvalues are 2, 0 .
(vi) $f(x, y)=x^{2}-y^{4}$

$$
H(f,(0,0))=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right) .
$$

Eigenvalues are 2, 0 .
(vii) $f(x, y)=x^{2}-6 x y+y^{2}$

$$
H(f,(0,0))=\left(\begin{array}{cc}
2 & -6 \\
-6 & 2
\end{array}\right) .
$$

Eigenvalues are $-4,8$.

$$
\text { (viii) } f(x, y)=3 x^{2}-2 x y+3 y^{2}
$$

$$
H(f,(0,0))=\left(\begin{array}{cc}
6 & -2 \\
-2 & 6
\end{array}\right) .
$$

Eigenvalues are 4, 8 .

Classification of stationary points

Definition

An $n \times n$ matrix H is

$$
\begin{array}{lll}
\text { positive definite } & \Leftrightarrow & \text { all eigenvalues are }>0 \\
\text { positive semidefinite } & \Leftrightarrow & \text { all eigenvalues are } \geq 0 \\
\text { negative definite } & \Leftrightarrow & \text { all eigenvalues are }<0 \\
\text { negative semidefinite } & \Leftrightarrow & \text { all eigenvalues are } \leq 0
\end{array}
$$

Theorem (Alternative test - Sylvester's criterion)

If H_{k} is the upper left $k \times k$ submatrix of H and $\triangle_{k}=\operatorname{det} H_{k}$ then H is

$$
\begin{array}{ll}
\text { positive definite } & \Leftrightarrow \triangle_{k}>0 \text { for all } k \\
\text { positive semidefinite } & \Rightarrow \Delta_{k} \geq 0 \text { for all } k \\
\text { negative definite } & \Leftrightarrow \\
& \Delta_{k}<0 \text { for all odd } k \text { and } \\
\text { negative semidefinite } & \Rightarrow \\
& \Delta_{k}>0 \text { for all even } k \\
& \\
& \Delta_{k} \geq 0 \text { for all odd } k \text { and } \\
& \text { for all even } k
\end{array}
$$

Classification of stationary points

Theorem

Suppose $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{2} and $\nabla f(\mathbf{a})=\mathbf{0}$ at an interior point \mathbf{a} of Ω. Then - $H(f, \mathbf{a})$ is positive definite $\Rightarrow f$ has a local minimum at a.

- $H(f, \mathbf{a})$ is negative definite $\Rightarrow f$ has a local maximum at a.
- f has a local minimum at $\mathbf{a} \Rightarrow H(f, \mathbf{a})$ is positive semidefinite.
- f has a local maximum at $\mathbf{a} \Rightarrow H(f, \mathbf{a})$ is negative semidefinite.

Classification of stationary points

For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with a stationary point at (a, b),

$$
\triangle_{1}=\frac{\partial^{2} f}{\partial x^{2}}(a, b) \quad \text { and } \quad \triangle_{2}=\frac{\partial^{2} f}{\partial x^{2}}(a, b) \frac{\partial^{2} f}{\partial y^{2}}(a, b)-\left(\frac{\partial^{2} f}{\partial x \partial y}(a, b)\right)^{2}
$$

Then

- $\triangle_{1}>0$ and $\triangle_{2}>0$ (two positive eigenvalues) $\Rightarrow(a, b)$ is a local minimum.
- $\triangle_{1}<0$ and $\triangle_{2}>0$ (two negative eigenvalues) $\Rightarrow(a, b)$ is a local maximum.
- local minimum at $(a, b) \Rightarrow \triangle_{1} \geq 0$ and $\triangle_{2} \geq 0$ (no negative eigenvalues).
- local maximum at $(a, b) \Rightarrow \triangle_{1} \leq 0$ and $\triangle_{2} \geq 0$ (no positive eigenvalues).

Notes:

- $\triangle_{2}<0 \Rightarrow(a, b)$ is a saddle point (one positive and one negative eigenvalue).
- The semidefinite case can also be a saddle point.

Classification of stationary points

Find and classify the stationary points of

$$
f(x, y)=x^{3}+6 x^{2}+3 y^{2}-12 x y+9 x .
$$

Stationary points occur when $\nabla f=\mathbf{0}$, that is,

$$
\begin{align*}
& \left(3 x^{2}+12 x-12 y+9,6 y-12 x\right)=(0,0) \\
& \Rightarrow\left\{\begin{array}{r}
3 x^{2}+12 x-12 y+9=0 \\
6 y-12 x=0
\end{array}\right. \tag{1}
\end{align*}
$$

(2) $\Rightarrow y=2 x$ which when substituted into (1) becomes

$$
3(x-3)(x-1)=0
$$

So $x=1 \Rightarrow y=2$ or $x=3 \Rightarrow y=6$.
So f has stationary points at $(1,2)$ and $(3,6)$.

Classification of stationary points

$$
f(x, y)=x^{3}+6 x^{2}+3 y^{2}-12 x y+9 x . \quad \Rightarrow \quad H(f,(x, y))=\left(\begin{array}{cc}
6 x+12 & -12 \\
-12 & 6
\end{array}\right) .
$$

At $(1,2)$:

$$
\begin{aligned}
& H(f,(1,2))=\left(\begin{array}{cc}
18 & -12 \\
-12 & 6
\end{array}\right) \\
& \begin{aligned}
\triangle_{2} & =18 \times 6-(-12) \times(-12) \\
\quad & =-36<0 .
\end{aligned}
\end{aligned}
$$

So $(1,2)$ is a saddle point of f.

At (3, 6):

$$
H(f,(3,6))=\left(\begin{array}{cc}
30 & -12 \\
-12 & 6
\end{array}\right)
$$

$$
\begin{aligned}
\triangle_{1} & =30>0, \\
\triangle_{2} & =30 \times 6-(-12) \times(-12) \\
& =36>0 .
\end{aligned}
$$

So $(3,6)$ is a local minimum point of f.

Classification of stationary points

Find and classify the stationary points of

$$
\begin{align*}
& f(x, y, z)=y x^{2}+z y^{2}+z^{2}-2 y x-2 z y+y-z \\
& \nabla f=\mathbf{0} \Rightarrow\left\{\begin{array}{r}
2 x y-2 y=0 \\
x^{2}+2 z y-2 x-2 z+1=0 \\
y^{2}+2 z-2 y-1=0
\end{array}\right. \tag{1}\\
& \hline
\end{align*}
$$

(1) is $2 y(x-1)=0$ so there are two cases
$y=0$:
(3) $\Rightarrow z=\frac{1}{2}$.
(2) $\Rightarrow x=0$ or $x=2$.

So ($0,0, \frac{1}{2}$) and ($2,0, \frac{1}{2}$) are stationary points.

$$
x=1:
$$

(2) $\Rightarrow z=0$ or $y=1$.

For $z=0$, (3) $\Rightarrow y=1 \pm \sqrt{2}$.
For $y=1$, (3) $\Rightarrow z=1$.
So, $(1,1 \pm \sqrt{2}, 0)$ and $(1,1,1)$ are stationary points.
f has 5 stationary points: $\left(0,0, \frac{1}{2}\right),\left(2,0, \frac{1}{2}\right),(1,1+\sqrt{2}, 0),(1,1-\sqrt{2}, 0),(1,1,1)$.

Classification of stationary points

To classify we need $H(f,(x, y))=\left(\begin{array}{ccc}2 y & 2 x-2 & 0 \\ 2 x-2 & 2 z & 2 y-2 \\ 0 & 2 y-2 & 2\end{array}\right)$.

$$
\begin{aligned}
& H\left(f,\left(0,0, \frac{1}{2}\right)\right)=\left(\begin{array}{ccc}
0 & -2 & 0 \\
-2 & 1 & -2 \\
0 & -2 & 2
\end{array}\right) \\
& \triangle_{1}=0, \quad \triangle_{2}=\left|\begin{array}{cc}
0 & -2 \\
-2 & 1
\end{array}\right|=-4 \\
& \triangle_{3}=\left|\begin{array}{ccc}
0 & -2 & 0 \\
-2 & 1 & -2 \\
0 & -2 & 2
\end{array}\right|=-8
\end{aligned}
$$

($0,0, \frac{1}{2}$) is a saddle point as the Hessian is neither positive semidefinite nor negative semidefinite.

$$
\begin{aligned}
& H(f,(1,1,1))=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \\
& \triangle_{1}=2 \\
& \triangle_{2}=4 \\
& \triangle_{3}=8
\end{aligned}
$$

$(1,1,1)$ is a local minimum point as the Hessian is positive definite.
[Eigenvalues are 2, 2, 2.]
[Eigenvalues are 1, -2, 4.]

Classification of stationary points

$$
\begin{aligned}
& H\left(f,\left(2,0, \frac{1}{2}\right)\right)= \\
& \left(\begin{array}{ccc}
0 & 2 & 0 \\
2 & 1 & -2 \\
0 & -2 & 2
\end{array}\right) \\
& \triangle_{1}=0 \\
& \triangle_{2}=-4 \\
& \triangle_{3}=-8 \\
& \left(2,0, \frac{1}{2}\right) \text { is a saddle } \\
& \text { point as the Hessian is } \\
& \text { neither positive } \\
& \text { semidefinite nor } \\
& \text { negative semidefinite. } \\
& \text { [E'values are 1, -2, 4.] } \\
& \begin{array}{l}
H(f,(1,1+\sqrt{2}, 0))= \\
\left(\begin{array}{ccc}
2+2 \sqrt{2} & 0 & 0 \\
0 & 0 & 2 \sqrt{2} \\
0 & 2 \sqrt{2} & 2
\end{array}\right)
\end{array} \\
& \triangle_{1}=2+2 \sqrt{2} \\
& \triangle_{2}=0 \\
& \Delta_{3}=-16-16 \sqrt{2} \\
& (1,1+\sqrt{2}, 0) \text { is a saddle } \\
& \text { point as the Hessian is } \\
& \text { neither positive semidefinite } \\
& \text { nor negative semidefinite. } \\
& \text { [} E \text { 'values are }-2,4 \text {, } \\
& 2+2 \sqrt{2} \text {.] } \\
& H(f,(1,1-\sqrt{2}, 0))= \\
& \left(\begin{array}{ccc}
2-2 \sqrt{2} & 0 & 0 \\
0 & 0 & -2 \sqrt{2} \\
0 & -2 \sqrt{2} & 2
\end{array}\right) \\
& \triangle_{1}=2-2 \sqrt{2} \\
& \triangle_{2}=0 \\
& \Delta_{3}=-16+16 \sqrt{2} \\
& (1,1-\sqrt{2}, 0) \text { is a saddle } \\
& \text { point as the Hessian is } \\
& \text { neither positive semidefinite } \\
& \text { nor negative semidefinite. } \\
& \text { [} E \text { 'values are }-2,4 \text {, } \\
& 2-2 \sqrt{2} \text {.] }
\end{aligned}
$$

Lagrange multipliers

We wish to find the extreme values of a function subject to a constraint (or constraints).

We want to solve problems like:
(a) Find the extreme values of $2 x+3 y$ subject to the constraint $x^{2}+y^{2}=4$.
(b) Find the minimum value of $x^{2}+y^{2}$ subject to the constraint $2 x+3 y=20$.
(c) Find the minimum value of $x^{2}+y^{2}$ subject to the constraint $x y=16$.

In the first case, the set of points satisfying the constraint

$$
\Omega=\left\{(x, y): x^{2}+y^{2}=4\right\}
$$

is compact and the function we are applying to those points

$$
f(x, y)=2 x+3 y
$$

is continuous. So we are guaranteed that $f(\Omega)$ has extreme values.
For the other two cases the existence of a minimum value may need to be considered on a case by case basis.

We will attempt to find candidate points for the extreme values.

Lagrange multipliers

Consider two differentiable functions

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \text { and } \quad g: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

and try to find extreme values of f subject to the constraint

$$
g(\mathbf{x})=c
$$

for some constant c.

What is the maximum or minimum value of f on this surface?

Lagrange multipliers

For differentiable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ look for points where f has a maximum or minimum value on the hypersurface

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n}: g(\mathbf{x})=c\right\} .
$$

Let $\mathbf{r}: I \subset \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a curve in the hypersurface S, that is

$$
g\left(r_{1}(t), r_{2}(t), \ldots, r_{n}(t)\right)=c, \quad \text { that is }(g \circ \mathbf{r})(t)=c
$$

Points that maximise or minimise f on S should also maximise or minimise f on any curve passing through those points. So we look for stationary points of $h=f \circ \mathbf{r}$.

$$
h^{\prime}(t)=0 \Rightarrow D(f \circ \mathbf{r})(t)=0 \Rightarrow \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=0
$$

We want this condition to hold for all curves through the candidate point and hence ∇f must be normal to the tangent plane to S. That is, provided $\nabla g \neq \mathbf{0}$, there must be a scalar function λ (Lagrange multiplier) such that

$$
\nabla f=\lambda \nabla g .
$$

Lagrange multipliers

Theorem

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are differentiable and

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n}: g(\mathbf{x})=c\right\}
$$

defines a smooth surface in \mathbb{R}^{n}. If a local maximum or minimum value of f on S occurs at \mathbf{a} then $\nabla f(\mathbf{a})$ and $\nabla g(\mathbf{a})$ are parallel. Thus if $\nabla g(\mathbf{a}) \neq \mathbf{0}$, then there exists $\lambda \in \mathbb{R}$ such that

$$
\nabla f(\mathbf{a})=\lambda \nabla g(\mathbf{a}) .
$$

Note that this theorem only gives us candidate points for where to look for maxima and minima. There is no guarantee that a maximum or minimum of f on S exists.

Lagrange multipliers

Find the maximum and minimum values of $2 x+3 y$ subject to $x^{2}+y^{2}=4$.

The constraint $x^{2}+y^{2}=4$ is purple. Some contours of $2 x+3 y$ are blue.

$$
\begin{aligned}
& 2 x+3 y=7.2111 \ldots \\
& 2 x+3 y=7 \\
& 2 x+3 y=6 \\
& 2 x+3 y=5 \\
& 2 x+3 y=4
\end{aligned}
$$

The constraint set is compact and f is continuous. Hence f attains a maximum and minimum value on the constraint set.

Lagrange multipliers

Extreme values of $f(x, y)=2 x+3 y$ subject to $g(x, y)=x^{2}+y^{2}=4$ occur when

$$
\nabla f=\lambda \nabla g \Rightarrow(2,3)=\lambda(2 x, 2 y)
$$

So,

$$
\left.\begin{array}{rl}
2 & =2 x \lambda \\
3 & =2 y \lambda \\
x^{2}+y^{2} & =4
\end{array}\right\} \quad(3) \quad(3) \quad \Rightarrow \quad \lambda=\frac{1}{x}=\frac{3}{2 y} \quad \Rightarrow \quad y=\frac{3 x}{2} .
$$

Substituting into the constraint equation (3) gives

$$
x^{2}+\left(\frac{3 x}{2}\right)^{2}=4 \quad \Rightarrow \quad \frac{13 x^{2}}{4}=4 \quad \Rightarrow \quad(x, y)=\left(\pm \frac{4}{\sqrt{13}}, \pm \frac{6}{\sqrt{13}}\right) .
$$

Evaluating f at the two candidate points,

$$
f\left(\frac{4}{\sqrt{13}}, \frac{6}{\sqrt{13}}\right)=4 \sqrt{13} \text { and } f\left(-\frac{4}{\sqrt{13}},-\frac{6}{\sqrt{13}}\right)=-4 \sqrt{13} .
$$

These are the maximum and minimum values of $f(x, y)$ subject to $g(x, y)=4$.

Lagrange multipliers

Find the maximum and minimum values of $x^{2}+y^{2}$ subject to $2 x+3 y=20$.

The constraint

$$
2 x+3 y=20
$$

is purple. Some contours of $x^{2}+y^{2}$ are blue.

Lagrange multipliers

For extreme values of $f(x, y)=x^{2}+y^{2}$ subject to $g(x, y)=2 x+3 y=20$,

$$
\nabla f=\lambda \nabla g \Rightarrow(2 x, 2 y)=\lambda(2,3)
$$

So,

$$
\left.\begin{array}{rl}
2 x & =2 \lambda \\
2 y & =3 \lambda \\
+3 y & =20
\end{array}(3)(3)\right\} \quad \Rightarrow \quad \lambda=x=\frac{2 y}{3} \quad \Rightarrow \quad y=\frac{3 x}{2} .
$$

Substituting into the constraint equation (3) gives

$$
2 x+3\left(\frac{3 x}{2}\right)=20 \Rightarrow x=\frac{40}{13} \Rightarrow(x, y)=\left(\frac{40}{13}, \frac{60}{13}\right) .
$$

Evaluating f at this candidate point,

$$
f\left(\frac{40}{13}, \frac{60}{13}\right)=\frac{400}{13} .
$$

It is clear that there is no maximum and this is the minimum.

Lagrange multipliers

Find the maximum and minimum values of $x^{2}+y^{2}$ subject to $x y=16$.

The constraint

$$
x y=16
$$

is purple. Some contours of $x^{2}+y^{2}$ are blue.

Lagrange multipliers

For extreme values of $f(x, y)=x^{2}+y^{2}$ subject to $g(x, y)=x y=16$,

$$
\nabla f=\lambda \nabla g \Rightarrow(2 x, 2 y)=\lambda(y, x) .
$$

So,

$$
\left.\begin{array}{ll}
2 x=y \lambda & (1) \\
2 y=x \lambda & (2) \\
x v=16
\end{array}\right\} \quad \Rightarrow \quad \lambda=\frac{2 x}{y}=\frac{2 y}{x} \quad \Rightarrow \quad y^{2}=x^{2} \quad \Rightarrow \quad y= \pm x .
$$

Substituting into the constraint equation (3) gives

$$
\pm x^{2}=16 \quad \Rightarrow \quad x= \pm 4 \quad \Rightarrow \quad(x, y)=(\pm 4, \pm 4)
$$

Evaluating f at these this candidate points,

$$
f(4,4)=32 \quad \text { and } \quad f(-4,-4)=32
$$

It is clear that there is no maximum and this is the minimum.

Lagrange multipliers

Find the maximum and minimum values (if they exist) of $f(x, y, z)=\frac{1}{x y z}$ on the ellipsoid $g(x, y, z)=9 x^{2}+y^{2}+z^{2}=1$ in the region where $x>0, y>0, z>0$.

$$
\left.\begin{array}{c}
\nabla f=\lambda \nabla g \Rightarrow\left(-\frac{1}{x^{2} y z},-\frac{1}{x y^{2} z},-\frac{1}{x y z^{2}}\right)=\lambda(18 x, 2 y, 2 z) \\
-\frac{1}{x^{2} y z}=18 \lambda x
\end{array}(1), \begin{array}{rl}
-\frac{1}{x y z} & =18 \lambda x^{2}=2 \lambda y^{2}=2 \lambda z^{2} \\
-\frac{1}{x y^{2} z}=2 \lambda y & (2) \\
-\frac{1}{x y z^{2}}=2 \lambda z & (3) \\
9 x^{2}=y^{2}=z^{2} \tag{4}\\
9 x^{2}+y^{2}+z^{2}=1 & (4)
\end{array}\right\} \Rightarrow\left\{\begin{aligned}
2 z^{2}=1 \Rightarrow z=\frac{1}{\sqrt{3}} \\
\Rightarrow(x, y, z)=\left(\frac{1}{3 \sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
\end{aligned}\right.
$$

Evaluating f at this candidate point,

$$
f\left(\frac{1}{3 \sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)=9 \sqrt{3} .
$$

It is clear that there is no maximum and this is the minimum.

Lagrange multipliers

If \mathbf{a} is a maximum or minimum point of a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ subject to r independent ${ }^{3}$ constraints

$$
g_{1}(\mathbf{x})=0, g_{2}(\mathbf{x})=0, \ldots, g_{r}(\mathbf{x})=0
$$

that define a smooth surface

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n}: g_{1}(\mathbf{x})=0, g_{2}(\mathbf{x})=0, \ldots, g_{r}(\mathbf{x})=0\right\}
$$

then there must exist constants $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ such that

$$
\nabla f(\mathbf{a})=\lambda_{1} \nabla g_{1}(\mathbf{a})+\lambda_{2} \nabla g_{2}(\mathbf{a})+\cdots+\lambda_{r} \nabla g_{r}(\mathbf{a})
$$

As for the single constraint case, if S is compact the existence of a maximum and minimum is guaranteed. In other cases, there may be no maximum or minimum points.

[^0]
Lagrange multipliers

Example: Find the extreme values of $f(x, y, z)=x+y+z$ subject to the two constraints

$$
g_{1}(x, y, z)=x^{2}+y^{2}=2 \quad \text { and } \quad g_{2}(x, y, z)=x+z=1 .
$$

To find candidate points for extrema, we solve

$$
\nabla f(x, y, z)=\lambda_{1} \nabla g_{1}(x, y, z)+\lambda_{2} \nabla g_{2}(x, y, z)
$$

in conjuction with the constraints. That is,

$$
\begin{align*}
& 1=2 \lambda_{1} x+\lambda_{2} \tag{1}\\
& 1=2 \lambda_{1} y \tag{2}\\
& 1 \text { (1) } \tag{3}\\
& \text { (2) } \\
& \lambda_{2}+y^{2}=2 \tag{5}\\
& x+z=1
\end{align*}
$$

Since the constraint surface is compact and f is continuous, minimum and maximum values exist and hence are $1-\sqrt{2}$ and $1+\sqrt{2}$.

Lagrange multipliers

Example: Find the points on the surface

$$
S=\left\{(x, y, z): z^{2}=x^{2} y-y^{2}+4\right\}
$$

that are closest to the origin. That is, we want to minimize $\sqrt{x^{2}+y^{2}+z^{2}}$ subject to

$$
g(x, y, z)=z^{2}-x^{2} y+y^{2}=4
$$

It is simpler to minimise the square of the distance to the origin, so we look for extreme values of

$$
f(x, y, z)=x^{2}+y^{2}+z^{2} .
$$

Solving

$$
\nabla f(x, y, z)=\lambda \nabla g(x, y, z), \quad g(x, y, z)=4
$$

gives the following set of candidate points:

$$
\left\{(x, y, z): x=0 \text { and } y^{2}+z^{2}=4\right\} \cup\{(\pm 1.1433 \ldots, 1.4505 \ldots, 0)\} .
$$

Now, $f(\pm 1.1433 \ldots, 1.4505 \ldots, 0)=1.8469 \ldots<2$.
Hence the points on S closest to the origin are $(\pm 1.1433 \ldots, 1.4505 \ldots, 0)$.

Lagrange multipliers

$$
\begin{align*}
& \nabla g=\left(-2 x y,-x^{2}+2 y, 2 z\right), \quad \text { If }=(2 x, 2 y, 2 z) \\
& I f=\lambda I g \Rightarrow \begin{array}{l}
-2 x y=2 \lambda x \ldots \text { (1) and } \\
-x^{2}+2 y=2 \lambda y \ldots \text {... (2) }
\end{array} \text { and } \\
& \begin{aligned}
-x^{2}+2 y & =2 \lambda y \\
2 z & =2 \lambda z
\end{aligned} \ldots \text { (3) } \quad z^{2}-x^{2} y+y^{2}=4 \tag{4}
\end{align*}
$$

(1) \Rightarrow either $x=0$ or $y=-\lambda$
(2) $\Rightarrow 2 y=2 \lambda y$

So $y=0 \quad$ or $\quad \lambda=1$
(1) $\Rightarrow z= \pm 2\} \Leftrightarrow z^{2}+y^{2}=4$ $\left.\begin{array}{c}\text { surcease of } \\ \lambda=1\end{array}\right\} \begin{aligned} & \text { circle of } \\ & \text { radius } 2\end{aligned}$

$$
\begin{aligned}
& \begin{array}{l}
\text { circle of } \\
\text { radius } 2 \\
\text { about } 2 \\
\text { in the plane } \\
x=0
\end{array}\left\{\begin{array}{l}
2 y^{3}+y^{2}+4=0 \\
\text { only one real } \\
\text { root } y \pm-1.4505 \\
\\
\Rightarrow x \geq \pm 1.1433
\end{array}\right.
\end{aligned}
$$

(2) $\Rightarrow x^{2}=0$ already considered

Inverse function theorem for $f: \mathbb{R} \rightarrow \mathbb{R}$

f invertible on (a, b)

$f^{\prime}(c)=0, f$ invertible on (a, b)

$f^{\prime}(c)=0, f$ not invertible on (a, b)

f not invertible on (a, b)

Inverse function theorem for $f: \mathbb{R} \rightarrow \mathbb{R}$

From first year. . .

Theorem (Inverse function theorem)

If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on an interval $I \subset \mathbb{R}$ and $f^{\prime}(x) \neq 0$ for all $x \in I$, then f is invertible on I and the inverse f^{-1} is differentiable with

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

That is, if $y=f(x)$ then f^{-1} exists and is differentiable with $x=f^{-1}(y)$ and

$$
\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}
$$

Inverse function theorem

Consider an affine function $T: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
T(x)=m x+b .
$$

T is differentiable on \mathbb{R} with $T^{\prime}(x)=m$. When $m \neq 0, T$ is invertible and

$$
T(x)=m x+b \Rightarrow x=m^{-1} T(x)-m^{-1} b
$$

so

$$
T^{-1}(x)=m^{-1} x-m^{-1} b .
$$

T^{-1} is differentiable and

$$
\left(T^{-1}\right)^{\prime}(x)=m^{-1} .
$$

If T is a good affine approximation to f near c then it seems plausible that on a small enough interval around c, the existence of T^{-1} guarantees the existence of f^{-1} with good affine approximation T^{-1}.

We would expect $\left(f^{-1}\right)^{\prime}(f(x))=\left(f^{\prime}(x)\right)^{-1}$.

Inverse function theorem

Consider an affine function $\mathbf{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by

$$
\mathbf{T}(\mathbf{x})=L \mathbf{x}+\mathbf{b}
$$

\mathbf{T} is differentiable on \mathbb{R}^{n} with $D \mathbf{T}=L$. When $\operatorname{det} L \neq 0, \mathbf{T}$ is invertible and

$$
\mathbf{T}(\mathbf{x})=L \mathbf{x}+\mathbf{b} \Rightarrow \mathbf{x}=L^{-1} \mathbf{T}(\mathbf{x})-L^{-1} \mathbf{b}
$$

so

$$
\mathbf{T}^{-1}(\mathbf{x})=L^{-1} \mathbf{x}-L^{-1} \mathbf{b} .
$$

If \mathbf{T} is a good affine approximation to \mathbf{f} near \mathbf{c} then it seems plausible that on a small enough ball around \mathbf{c}, the existence of \mathbf{T}^{-1} guarantees the existence of \mathbf{f}^{-1} with good affine approximation \mathbf{T}^{-1}.

We would expect $D_{\mathbf{c}} \mathbf{f}=L$ then $D_{\mathbf{f}(\mathbf{c})}\left(\mathbf{f}^{-1}\right)=L^{-1}$.

Inverse function theorem

Theorem

Let $\Omega \subset \mathbb{R}^{n}$ be open, $\mathbf{f}: \Omega \rightarrow \mathbb{R}^{n}$ be C^{1} and suppose $\mathbf{a} \in \Omega$.
If $D \mathbf{f}(\mathbf{a})$ is invertible (as a matrix) then \mathbf{f} is invertible on an open set U containing a. That is,

$$
\mathbf{f}^{-1}: \mathbf{f}(U) \rightarrow U
$$

exists.
Furthermore, \mathbf{f}^{-1} is C^{1} and for $\mathbf{x} \in U$,

$$
D_{\mathbf{f}(\mathrm{x})} \mathbf{f}^{-1}=\left(D_{\mathbf{x}} \mathbf{f}\right)^{-1}
$$

Note that this says \mathbf{f}^{-1} has a good affine approximation at $\mathbf{f}(\mathbf{a})$ given by

$$
\mathbf{f}^{-1}(\mathbf{x}) \simeq \mathbf{a}+\left(D_{\mathbf{a}} \mathbf{f}\right)^{-1}(\mathbf{x}-\mathbf{f}(\mathbf{a}))
$$

Inverse function theorem

Example: Can the map $x=r \cos \theta, y=r \sin \theta$ be inverted?

Define $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\binom{x}{y}=\mathbf{f}\binom{r}{\theta}=\binom{r \cos \theta}{r \sin \theta}
$$

Away from $(x, y)=(0,0)($ ie $r=0) \mathbf{f}$ is differentiable with $D \mathbf{f}=J \mathbf{f}$ so

Eg, at $\mathbf{a}=\left(\sqrt{2}, \frac{\pi}{4}\right), \mathbf{f}(\mathbf{a})=(1,1)$. So

$$
D \mathbf{f}\left(\sqrt{2}, \frac{\pi}{4}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -1 \\
\frac{1}{\sqrt{2}} & 1
\end{array}\right)
$$

$$
D \mathbf{f}=\left(\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right)
$$

and $\operatorname{det}(D \mathbf{f})=r \cos ^{2} \theta+r \sin ^{2} \theta=r \neq 0$.
So \mathbf{f} is locally invertible away from $r=0$.

$$
\begin{aligned}
D\left(\mathbf{f}^{-1}\right)(1,1) & =\left(D \mathbf{f}\left(\sqrt{2}, \frac{\pi}{4}\right)\right)^{-1} \\
& =\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right) .
\end{aligned}
$$

Inverse function theorem

We can check that this matches what we grom directly inverting \mathbf{f}. In the first quadrant away from $\mathbf{0}$,

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}}, \quad \theta=\tan ^{-1}(y / x) \quad \Rightarrow \quad \mathbf{f}^{-1}\binom{x}{y}=\binom{\sqrt{x^{2}+y^{2}}}{\tan ^{-1}(y / x)} \\
& \Rightarrow D \mathbf{f}^{-1}=\left(\begin{array}{cc}
\frac{x}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right) \quad \Rightarrow \quad D \mathbf{f}^{-1}\binom{1}{1}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right) .
\end{aligned}
$$

An affine approximation to \mathbf{f}^{-1} near $\binom{1}{1}$ is

$$
\begin{aligned}
\mathbf{f}^{-1}\binom{x}{y} & \simeq \mathbf{f}^{-1}\binom{1}{1}+D\left(\mathbf{f}^{-1}\right)\binom{1}{1}\binom{x-1}{y-1} \\
& =\binom{\sqrt{2}}{\frac{\pi}{4}}+\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right)\binom{x-1}{y-1} .
\end{aligned}
$$

Inverse function theorem

Suppose $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by

$$
\mathbf{f}\binom{x}{y}=\binom{x^{3} e^{y}+y-2 x}{2 x y+2 x}
$$

Note $\mathbf{f}\binom{1}{0}=\binom{-1}{2}$.
Show that \mathbf{f} has a differentiable inverse near $(1,0)$ and hence find an approximate solution to $\mathbf{f}^{-1}\binom{-1.2}{2.1}$, that is, an approximate solution to

$$
\begin{aligned}
x^{3} e^{y}+y-2 x & =-1.2 \\
2 x y+2 x & =2.1 .
\end{aligned}
$$

The partial derivatives of the components of \mathbf{f} exist and are continuous everywhere. Hence \mathbf{f} is differentiable on \mathbb{R}^{2} and

$$
D \mathbf{f}=J \mathbf{f}=\left(\begin{array}{cc}
3 x^{2} e^{y}-2 & x^{3} e^{y}+1 \\
2 y+2 & 2 x
\end{array}\right) \quad \Rightarrow \quad D \mathbf{f}(1,0)=\left(\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right) .
$$

Inverse function theorem

Since $\operatorname{det}\left(D \mathbf{f}\binom{1}{0}\right)=-2 \neq 0$, the Inverse Function Theorem says that \mathbf{f} has a C^{1} local inverse near $(1,0)$ with derivative

$$
D \mathbf{f}^{-1}\binom{-1}{2}=\left(D \mathbf{f}\binom{1}{0}\right)^{-1}=-\frac{1}{2}\left(\begin{array}{cc}
2 & -2 \\
-2 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1 \\
1 & -\frac{1}{2}
\end{array}\right)
$$

Now, the best affine approximation to \mathbf{f}^{-1} is

$$
\mathbf{f}^{-1}\binom{u}{v} \simeq \mathbf{f}^{-1}\binom{-1}{2}+D \mathbf{f}^{-1}\binom{-1}{2}\binom{u-(-1)}{v-2}=\binom{1}{0}+\left(\begin{array}{cc}
-1 & 1 \\
1 & -\frac{1}{2}
\end{array}\right)\binom{u+1}{v-2}
$$

So now the approximate solution is

$$
\begin{aligned}
& \binom{x}{y}=\mathbf{f}^{-1}\binom{-1.2}{2.1} \simeq\binom{1}{0}+\left(\begin{array}{cc}
-1 & 1 \\
1 & -\frac{1}{2}
\end{array}\right)\binom{-0.2}{0.1}=\binom{1}{0}-\frac{1}{2}\binom{-0.6}{0.5}=\binom{1.3}{-0.25} \\
& {\left[\mathbf{f}\binom{1.3}{-0.25} \simeq\binom{-1.14}{1.95}, \mathbf{f}^{-1}\binom{-1.02}{2.01} \simeq\binom{1.03}{-0.025}, \mathbf{f}\binom{1.03}{-0.025} \simeq\binom{-1.019}{2.009} .\right]}
\end{aligned}
$$

Implicit function theorem

Consider a C^{1} function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, its 0 contour,

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: g(x, y)=0\right\}
$$

and a point $\left(x_{0}, y_{0}\right) \in S$. When does S define y as a function of x near the point $\left(x_{0}, y_{0}\right)$?

At A and B but not C.

Implicit function theorem

Given

- $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is C^{1},
- $g\left(x_{0}, y_{0}\right)=0$ and
- $\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) \neq 0$,
we want to show that there is a δ such that for

$$
x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

there is a unique

$$
y \in\left(y_{0}-\delta, y_{0}+\delta\right)
$$

satisfying

$$
g(x, y)=0 .
$$

$$
\text { - } \frac{\partial g}{\partial y}(x, y)>b
$$

$$
\text { - }\left|\frac{\partial g}{\partial x}(x, y)\right|<M
$$

for some $M>0$.

Implicit function theorem

Choose positive a_{0} and δ so that
$a_{0}<a, \quad \delta<\min \left(a_{0}, \frac{b a_{0}}{M}\right)$.
$g\left(x, y_{0}+a_{0}\right)>0-M \delta+b a_{0}$
$>-b a_{0}+b a_{0}=0$.
$g\left(x, y_{0}-a_{0}\right)<0+M \delta-b a_{0}$
$<b a_{0}-b a_{0}=0$.
IVT $\Rightarrow \exists y \in\left(y_{0}-a_{0}, y_{0}+a_{0}\right)$
such that $g(x, y)=0$.
$\frac{\partial g}{\partial y}>0 \Rightarrow y$ is unique.

MVT $\Rightarrow g\left(x, y_{0} \pm a_{0}\right)=g\left(x_{0}, y_{0}\right)+\frac{\partial g}{\partial x}\left(c^{ \pm}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial g}{\partial y}\left(x, d^{ \pm}\right)\left(a_{0}-y_{0}\right)$.

Implicit function theorem

We have shown that given

- $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is C^{1},
- $g\left(x_{0}, y_{0}\right)=0$ and
- $\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right) \neq 0$,
there is a δ such that for

$$
x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

there is a unique

$$
y \in\left(y_{0}-\delta, y_{0}+\delta\right)
$$

satisfying

$$
g(x, y)=0 . \quad \Rightarrow f^{\prime}\left(x_{0}\right)=-\left(\frac{\partial g}{\partial y}\left(x_{0}, y_{0}\right)\right)^{-1} \frac{\partial g}{\partial x}\left(x_{0}, y_{0}\right) .
$$

So, there is $f:\left(x_{0}-\delta, x_{0}+\delta\right) \rightarrow \mathbb{R}$ such that

$$
g(x, f(x))=0
$$

It can also be shown that f is C^{1}. Assuming f is differentiable, we can find f^{\prime} by implicit differentiation and find

$$
\begin{aligned}
& \frac{d}{d x}(g(x, f(x)))=0 \\
& \Rightarrow \frac{\partial g}{\partial x} \frac{d x}{d x}+\frac{\partial g}{\partial y} \frac{d y}{d x}=0 \\
& \Rightarrow \frac{\partial g}{\partial x}+\frac{\partial g}{\partial y} f^{\prime}(x)=0
\end{aligned}
$$

Implicit Function Theorem

For the Implicit Function Theorem in higher dimensions, consider the following.

- Near which points does

$$
x^{2}+y^{2}+z^{2}=1
$$

define z as a function of x and y ? That is, when does there exist f such that $z=f(x, y)$?

- Given

$$
\begin{array}{r}
x+y+z=6 \\
2 x-y+2 z=8
\end{array}
$$

you can find y and z given just the value of x. So there is a function $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that $\binom{y}{z}=\mathbf{f}(x)$.
Typically, if there are n equations and r variables, we expect to be able to solve for n of variables in terms of the remaining $n-r$ variables near most points.

Implicit Function Theorem

Let $\mathbf{x} \in \mathbb{R}^{m}$ denote our known variables and let $\mathbf{u} \in \mathbb{R}^{n}$ denote our unknown variables. To solve for \mathbf{u} in terms of \mathbf{x} we expect to need n equations:

$$
\begin{gathered}
g_{1}\left(x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{n}\right)=0 \\
g_{2}\left(x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{n}\right)=0 \\
\vdots \\
g_{n}\left(x_{1}, \ldots, x_{m}, u_{1}, \ldots, u_{n}\right)=0
\end{gathered}
$$

We can write this more succinctly as

$$
\mathbf{g}(\mathbf{x}, \mathbf{u})=\mathbf{0}
$$

where $\mathbf{g}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{n}$ is

$$
\mathbf{g}(\mathbf{x}, \mathbf{u})=\left(g_{1}(\mathbf{x}, \mathbf{u}), \ldots, g_{n}(\mathbf{x}, \mathbf{u})\right)
$$

Solving this system of equations means finding a way of specifying what \mathbf{u} is if we know \mathbf{x}. That is, we need to find a continuous function $\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ satisfying

$$
\mathbf{g}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=\mathbf{0} .
$$

Implicit Function Theorem

Define the $n \times m$ matrix A and $n \times n$ matrix B in terms of $D \mathbf{g}$.

$$
D \mathbf{g}=\left(\begin{array}{cccccccc}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} & \cdots & \frac{\partial g_{1}}{\partial x_{m}} & \frac{\partial g_{1}}{\partial u_{1}} & \cdots & \frac{\partial g_{1}}{\partial u_{n}} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\frac{\partial g_{n}}{\partial x_{1}} & \frac{\partial g_{n}}{\partial x_{2}} & \cdots & \frac{\partial g_{n}}{\partial x_{m}} & \frac{\partial g_{n}}{\partial u_{1}} & \cdots & \frac{\partial g_{n}}{\partial u_{n}}
\end{array}\right)=[A \mid B]
$$

Theorem (Implicit Function Theorem)

Suppose that $\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right)$ is on the surface $\mathbf{g}(\mathbf{x}, \mathbf{u})=\mathbf{0}$. If $B\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right)$ is an invertible matrix, then there is an open set V around \mathbf{x}_{0} on which \mathbf{u} is defined implicitly as a function of \mathbf{x}. That is, there exists a continuously differentiable function $\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ such that for all $\mathbf{x} \in V$

$$
\mathbf{g}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=\mathbf{0}
$$

Implicit Function Theorem

To find $D \mathbf{f}$ in terms of $D \mathbf{g}$ use the chain rule. Let $\mathbf{h}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m+n}$ be defined by

$$
\mathbf{h}(\mathbf{x})=\binom{\mathbf{x}}{\mathbf{f}(\mathbf{x})}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m} \\
f_{1}\left(x_{1}, \ldots, x_{m}\right) \\
\vdots \\
f_{n}\left(x_{1}, \ldots, x_{m}\right)
\end{array}\right) \quad \Rightarrow \quad D_{\mathbf{x}} \mathbf{h}=\binom{I_{m}}{D_{\mathbf{x}} \mathbf{f}}
$$

where I_{m} is the $n \times n$ identity matrix. Differentiating the equation

$$
\mathbf{g}(\mathbf{x}, \mathbf{f}(\mathbf{x}))=(\mathbf{g} \circ \mathbf{h})(\mathbf{x})=\mathbf{0}
$$

gives

$$
\mathbf{0}=D_{\mathbf{h}(\mathbf{x})} \mathbf{g} D_{\mathbf{x}} \mathbf{h}=(A(\mathbf{h}(\mathbf{x})) \mid B(\mathbf{h}(\mathbf{x})))\binom{I_{m}}{D_{\mathbf{x}} \mathbf{f}}=A(\mathbf{h}(\mathbf{x}))+B(\mathbf{h}(\mathbf{x})) D_{\mathbf{x}} \mathbf{f} .
$$

Rearranging this gives $D_{\mathbf{x}} \mathbf{f}=-B(\mathbf{h}(\mathbf{x}))^{-1} A(\mathbf{h}(\mathbf{x}))$.

Implicit Function Theorem

Show that there are open sets $U \subset \mathbb{R}^{2}$ containing $\binom{1}{2}$ and $V \subset \mathbb{R}^{2}$ containing $\binom{1}{5}$ so that the equations

$$
\begin{aligned}
x^{2}+x y+y u+u^{2}-x v-1 & =0 \\
y^{2}+x y-u^{2}-v & =0
\end{aligned}
$$

define a differentiable function $\mathbf{f}: U \rightarrow V$ for which (x, y, u, v) satisfies the equations when $\binom{u}{v}=\mathbf{f}\binom{x}{y}$.

Find the affine approximation to \mathbf{f} near $\binom{1}{2}$ and hence find an approximate solution $\binom{u}{v}$ to these equations when $\binom{x}{y}=\binom{1.2}{1.9}$.

Implicit Function Theorem

The equations can be written in the form $\mathbf{g}\left(\binom{x}{y},\binom{u}{v}\right)=\binom{0}{0}$. Then

$$
D \mathbf{g}=\left(\begin{array}{cccc}
2 x+y-v & x+u & y+2 u & -x \\
y & x+2 y & -2 u & -1
\end{array}\right) .
$$

At the known point $\mathbf{x}_{0}=\binom{1}{2}, \mathbf{u}_{0}=\binom{1}{5}$, this gives

$$
D \mathbf{g}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right)=\left(\begin{array}{cc|cc}
-1 & 2 & \mid c c & -1 \\
2 & 5 & -2 & -1
\end{array}\right)=[A \mid B] .
$$

B is invertible and so there is a C^{1} function $\mathbf{f}\binom{x}{y}$ defined on an open set around \mathbf{x}_{0} so that $\mathbf{g}\left(\binom{x}{y}, \mathbf{f}\binom{x}{y}\right)=\mathbf{0}$, and

$$
D f\left(\mathrm{x}_{0}\right)=-B^{-1} A=-\frac{1}{-6}\left(\begin{array}{cc}
-1 & 1 \\
2 & 4
\end{array}\right)\left(\begin{array}{cc}
-1 & 2 \\
2 & 5
\end{array}\right)=\frac{1}{6}\left(\begin{array}{cc}
3 & 3 \\
6 & 24
\end{array}\right) .
$$

Implicit Function Theorem

Thus the affine approximation to $\mathbf{f}\binom{x}{y}$ near $\binom{1}{2}$ is

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{f}\left(\mathbf{x}_{0}\right)+D \mathbf{f}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)=\binom{1}{5}+\frac{1}{6}\left(\begin{array}{cc}
3 & 3 \\
6 & 24
\end{array}\right)\binom{x-1}{y-2} .
$$

In particular

$$
f\binom{1.2}{1.9} \approx\binom{1}{5}+\frac{1}{6}\left(\begin{array}{cc}
3 & 3 \\
6 & 24
\end{array}\right)\binom{0.2}{-0.1}=\binom{1.05}{4.8}
$$

You can check whether this is any good by calculating $\mathbf{g}\left(\binom{1.2}{1.9},\binom{1.05}{4.8}\right)$.

Implicit Function Theorem

What we have done is to replace the original equations

$$
\mathbf{g}(x, y, u, v)=\mathbf{0}
$$

with the equations

$$
\mathbf{T}(x, y, u, v)=\mathbf{g}(1,2,1,5)+\left(\begin{array}{cccc}
-1 & 2 & 4 & -1 \\
2 & 5 & -2 & -1
\end{array}\right)\left(\begin{array}{l}
x-1 \\
y-2 \\
u-1 \\
v-5
\end{array}\right)=\binom{0}{0}
$$

where \mathbf{T} is the best affine approximation to \mathbf{g} near $(1,2,1,5)$. That is, since $\mathbf{g}(1,2,1,5)=\mathbf{0}$, the given equations are approximately

$$
\begin{aligned}
-(x-1)+2(y-2)+4(u-1)-(v-5) & =0 \\
2(x-1)+5(y-2)-2(u-1)-(v-5) & =0
\end{aligned}
$$

which simpifies to the pair of linear equations

$$
\begin{aligned}
-x+2 y+4 u-v & =-2 \\
2 x+5 y-2 u-v & =-5 .
\end{aligned}
$$

[^0]: ${ }^{3}$ The gradient vectors, $\nabla g_{1}, \nabla g_{2}, \ldots, \nabla g_{r}$ must be linearly independent.

