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Differentiability of f : Rn → Rm

f : R→ R is differentiable at a ∈ R means there is a “good” straight line1

approximation to f near a called the tangent line. This approximating function is
given by

T (x) = f (a) + f ′(a)(x − a) = f (a)− f ′(a)a + f ′(a)x = y0 + L(x).

where, for each a, y0 = f (a)− f ′(a)a is a fixed number and L : R→ R is the
linear map given by L(x) = f ′(a)x .

f ′(a) is called the derivative of f at a
and is the slope of the “good” straight
line approximation. It can be found by
calculating the a limit.

f ′(a) = lim
x→a

f (x)− f (a)

x − a
.

a x

y

y = T (x)
y = f (x)

1not vertical
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Affine maps

Definition
The function T : Rn → Rm is affine means there is y0 ∈ Rm and a linear map (ie
matrix) L : Rn → Rm such that

T (x) = y0 + L(x).

An affine function T : R→ R has the form

T (x) = b + mx , for constants m, b ∈ R.

A function f : R→ R is differentiable at a if there is a “good” affine
approximation to f at a given by

T (x) = f (a)− f ′(a)a︸ ︷︷ ︸
y0

+ f ′(a)x︸ ︷︷ ︸
L(x)

and “good” means

f ′(a) = lim
x→a

f (x)− f (a)

x − a
.
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Good affine approximation

Need to rewrite the definition of “good” in a way that can be used for
f : Rn → Rm.

f ′(a) = lim
x→a

f (x)− f (a)

x − a

⇔ 0 = lim
x→a

f (x)− f (a)− f ′(a)(x − a)

x − a

⇔ 0 = lim
x→a

f (x)− T (x)

x − a

⇔ 0 = lim
x→a

∣∣∣∣ f (x)− T (x)

x − a

∣∣∣∣
⇔ 0 = lim

x→a

|f (x)− T (x)|
|x − a|

T (x) = f (a) + f ′(a)(x − a) = f (a) + L(x − a).
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Differentiability of f : Rn → Rm

Definition
A function f : Ω ⊂ Rn → Rm is differentiable a ∈ Ω if there is a linear map
L : Rn → Rm such that

lim
x→a

||f(x)− f(a)− L(x− a)||
||x− a||

= 0.

The matrix of the linear map L is called the derivative of f at a and is denoted
Daf.

We could use the ε-δ definition of the limit to give an alternative form.

Definition (Alternative)
A function f : Ω ⊂ Rn → Rm is differentiable a ∈ Ω if there is a linear map
L : Rn → Rm such that for all ε > 0 there exists δ > 0 such that for x ∈ Ω

||x− a|| < δ ⇒ ||f(x)− f(a)− L(x− a)|| < ε||x− a||.
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Differentiability examples

Suppose T : Rn → Rm is a linear transformation given by T(x) = ATx. Is it
differentiable and if so, what is it’s derivative?

lim
x→a

||T(x)− T(a)− T(x− a)||
||x− a||

= lim
x→a

0
||x− a||

= 0.

Hence T is differentiable and DaT = AT.
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Differentiability examples

For f : R2 → R2 with

f(x , y) =

(
x2 + 2xy
x + y2,

)
L =

(
4 2
1 2

)
and a =

(
1
1

)
,

show that f is differentiable at a and that the matrix of its derivative is Daf = L.

f(x)− f(a)− L(x− a) =

(
x2 + 2xy
x + y2

)
−
(
3
2

)
−
(
4 2
1 2

)(
x − 1
y − 1

)
=

(
x2 + 2xy − 4x − 2y + 3

y2 + 1− 2y

)
So for f to be differentiable at a with derivative L, we need

lim
(x,y)→(1,1)

√
(x2 + 2xy − 4x − 2y + 3)2 + (y2 + 1− 2y)2√

(x − 1)2 + (y − 1)2
= 0.

This is true, but takes a bit of work.
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Partial derivatives

If we fix a value of y we can calculate the rate of change of f (x , y) as only x
changes. This is called the partial derivative of f (x , y) with respect to x .

z

y

x

(a, b)

z = f (x , y) In the y = b slice we can find
the slope of the tangent line at
the point x = a.

x

z

a

z = f (x , b)

D1f (a, b) = f1(a, b) = fx(a, b) =
∂f
∂x

(a, b) = lim
h→0

f (a + h, b)− f (a, b)

h
.
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Partial derivatives

If we fix a value of x we can calculate the rate of change of f (x , y) as only y
changes. This is called the partial derivative of f (x , y) with respect to y .

z

y

x
(a, b)

z = f (x , y) In the x = a slice we can find
the slope of the tangent line at
the point y = b.

y

z

b

z = f (a, y)

D2f (a, b) = f2(a, b) = fy (a, b) =
∂f
∂y

(a, b) = lim
h→0

f (a, b + h)− f (a, b)

h
.
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Partial derivatives

Just as in one variable calculus, we rarely use the definition to calculate a
derivative, we use the ‘rules’ of differentiation remembering to treat some
variables as constants.

If z = f (x , y) = x2y + x3 + e2y , find
∂z
∂x

and
∂z
∂y

.

∂z
∂x

= 2xy + 3x2 ,
∂z
∂y

= x2 + 2e2y

Find
∂f
∂x

and
∂f
∂y

if f (x , y) = (x2 + y3)
1
2 .

∂f
∂x

=
1
2

(x2 + y3)−
1
2 2x = x(x2 + y3)−

1
2

∂f
∂y

=
1
2

(x2 + y3)−
1
2 3y2 =

3
2
y2(x2 + y3)−

1
2

Find
∂G
∂b

if G (a, b, c) = a2b3c4 + bc.
∂G
∂b

= 3a2b2c4 + c .
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Partial derivatives

We can also calculate higher partial derivative, but unlike one variable calculus,
there are a number of possibilities.

∂

∂x

(
∂f
∂x

)
is denoted

∂2f
∂x2 or fxx or f11

∂

∂x

(
∂f
∂y

)
is denoted

∂2f
∂x∂y

or fyx or f12

∂

∂y

(
∂f
∂x

)
is denoted

∂2f
∂y∂x

or fxy or f21

∂

∂y

(
∂f
∂y

)
is denoted

∂2f
∂y2 or fyy or f22

For f : Ω ⊂ Rn → R with coordinates xi and standard basis vectors ei

∂f
∂xi

(a) = lim
h→0

f (a + hei )− f (a)

h
.
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Partial derivatives

For f (x , y) = x2y + 2,

∂f
∂x

= 2xy ,
∂f
∂y

= x2

∂2f
∂x2 = 2y ,

∂2f
∂y2 = 0,

∂2f
∂y∂x

=
∂

∂y

(
∂f
∂x

)
=

∂

∂y

(
2xy
)

= 2x ,

∂2f
∂x∂y

=
∂

∂x

(
∂f
∂y

)
=

∂

∂x

(
x2
)

= 2x .

Notice that, as expected, the two mixed partial derivatives are equal.
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Partial derivatives

Theorem (Clariaut’s theorem)

If f ,
∂f
∂xi

,
∂f
∂xj

,
∂2f
∂xixj

,
∂2f
∂xjxi

all exist and are continuous on an open set around a

then
∂2f
∂xixj

(a) =
∂2f
∂xjxi

(a).

That is, the partial derivatives commute.

Here’s an example where they don’t commute.

Calculate fxy (0, 0) and fyx(0, 0) for

f (x , y) =


xy(x2 − y2)

x2 + y2 for (x , y) 6= (0, 0)

0 for (x , y) = (0, 0).
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Partial derivatives

f (x , y) =


xy(x2 − y2)

x2 + y2 for (x , y) 6= (0, 0)

0 for (x , y) = (0, 0).

Away from (0, 0), f is a well
defined rational function of its
arguments.

fx(x , y) =
y(x4 − y4 + 4x2y2)

(x2 + y2)2 and fy (x , y) =
x(x4 − y4 − 4x2y2)

(x2 + y2)2 .

At (0, 0) we need to use the definition to calculate the partial derivatives.

fx(0, 0) = lim
h→0

f (0 + h, 0)− f (0, 0)

h
= lim

h→0

0− 0
h

= 0.

fy (0, 0) = lim
h→0

f (0, 0 + h)− f (0, 0)

h
= lim

h→0

0− 0
h

= 0.

fxy (0, 0) = lim
h→0

fx(0, h)− fx(0, 0)

h
= lim

h→0

h(04 − h4 + 0)

h4 − 0

h
= −1.

fyx(0, 0) = lim
h→0

fy (h, 0)− fy (0, 0)

h
= lim

h→0

h(h4 − 04 − 0)

h4 − 0

h
= 1 6= fxy (0, 0).

JM Kress (UNSW Maths & Stats) MATH2111 Differentiable Semester 1, 2014 14 / 127



Jacobian matrix

Definition
If all partial derivatives of f : Ω ⊂ Rn → Rm exist at a ∈ Ω, then the Jacobian
matrix of f at a is

Jaf =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)

∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)

...
...

. . .
...

∂fm
∂x1

(a) ∂fm
∂x2

(a) · · · ∂fm
∂xn

(a)

 .

Theorem
For f : Ω ⊂ Rn → Rm and an interior point a ∈ Ω. If f is differentiable at a then

all partial derivatives
∂fj
∂xi

of the components of f exist at a and Daf = Jaf.

That is, where f is differentiable, its derivative is given by its Jacobian matrix.
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Jacobian matrix

The Jacobian matrix may exist even when the function is not differentiable.

Example: f : R2 → R with f (x , y) =

{
0 for x = 0 or y = 0,
−1 otherwise.

Clearly
∂f
∂x

(0, 0) =
∂f
∂y

(0, 0) = 0. However, the affine function

T (x , y) = f (0, 0) + J(0,0)f
(
x
y

)
= 0 + (0 0)

(
x
y

)
= 0.

is not a “good” approximation to f (x , y) near (0, 0).

Notice that in this example, f is not continuous. Should a differentiable function
be continuous?
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Differentiable ⇒ continuous

Lemma
For x ∈ Rn and L an m × n matrix, lim

x→0
||Lx|| = 0.

Proof.
Let ri be the i th row of L and so the i th row of Lx is ri · x. Then, using the
Cauchy-Schwarz inequality (|a · b| ≤ ||a|| ||b||),

||Lx|| =

√√√√ m∑
i=1

(ri · x)2 ≤

√√√√ m∑
i=1

||ri ||2||x||2 = ||x||

√√√√ m∑
i=1

||ri ||2.

So,

0 ≤ lim
x→0
||Lx|| ≤

√√√√ m∑
i=1

||ri ||2 lim
x→0
||x|| = 0.

Hence, lim
x→0
||Lx|| = 0.
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Differentiable ⇒ continuous

Theorem
Suppose Ω ∈ Rn is open and f : Ω ⊂ Rn → Rm is differentiable on Ω. Then f is
continuous on Ω.

Proof.
If f is differentiable at a then there is a matrix L such that

lim
x→a

||f(x)− f(a)− L(x− a)||
||x− a||

= 0 ⇒ lim
x→a
||f(x)− f(a)− L(x− a)|| = 0.

Now,

lim
x→a
||f(x)− f(a)|| = lim

x→a
||f(x)− f(a)− L(x− a) + L(x− a)||

≤ lim
x→a
||f(x)− f(a)− L(x− a)||+ ||L(x− a)||

= 0 + 0 = 0.

So lim
x→a

f(x) = f(a) and hence f is continuous at a.
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Differentiability

Theorem

Suppose Ω ⊂ Rn is open and f : Ω→ Rm. If
∂fj
∂xi

exists and is continuous on Ω

for all i = 1, . . . , n and j = 1, . . . ,m, then f is differentiable on Ω.

Example: Consider f : R2 → R2 with f (x , y) = (x2 + 2xy , x + y2).

The Jacobian exists and is given by J(x,y)f =

(
2x + 2y 2x

1 2y

)
.

Each entry is continuous on R2 and hence f is differentiable on R2 with derivative
D(x,y)f = J(x,y)f .

Notation: We often write Jf (x , y) instead of J(x,y)f or even just Jf . Eg,

Jf (1, 1) =

(
4 2
1 2

)
. Similarly form Df , D(x,y)f , Df (x , y).
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Sketch of proof for f : R2 → R

x

y

A

B
(x0, y0)

(x0 + h1, y0 + h2)

a

b

The MVT says that along side A there is
a ∈ (x0, x0 + h1) such that

f (x0 + h1, y0)− f (x0, y0) =
∂f
∂x

(a, y0)h1.

Continuity of
∂f
∂x

says ∀ε1 > 0 we can choose h1 small enough so that∣∣∣∣∂f∂x (a, y0)− ∂f
∂x

(x0, y0)

∣∣∣∣ < ε1 ⇒ ∂f
∂x

(a, y0) =
∂f
∂x

(x0, y0) + ε′1

where −ε1 < ε′1 < ε1. So,

f (x0 + h1, y0)− f (x0, y0) =
∂f
∂x

(x0, y0)h1 + ε′1h1.
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Sketch of proof for f : R2 → R

x

y

A

B
(x0, y0)

(x0 + h1, y0 + h2)

a

b

Similarly, the MVT says that along side B there is
b ∈ (y0, y0 + h1) such that

f (x0+h1, y0+h2)−f (x0+h1, y0) =
∂f
∂y

(x0+h1, b)h2.

Continuity of
∂f
∂y

says ∀ε2 > 0 we can choose ||(h1, h2)|| small enough so that

∣∣∣∣∂f∂y (x0 + h1, b)− ∂f
∂y

(x0, y0)

∣∣∣∣ < ε2 ⇒ ∂f
∂y

(x0 + h1, b) =
∂f
∂y

(x0, y0) + ε′2

where −ε2 < ε′2 < ε2. So,

f (x0 + h1, y0 + h2)− f (x0 + h1, y0) =
∂f
∂y

(x0, y0)h2 + ε′2h2.
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Sketch of proof for f : R2 → R

x

y

A

B
(x0, y0)

(x0 + h1, y0 + h2)

a

b
f (x0 + h1, y0)− f (x0, y0) =

∂f
∂x

(x0, y0)h1 + ε′1h1.

f (x0 + h1, y0 + h2)− f (x0 + h1, y0)

=
∂f
∂y

(x0, y0)h2 + ε′2h2.

So,

f (x0 + h1, y0 + h2)− f (x0, y0)

= f (x0 + h1, y0 + h2)− f (x0 + h1, y0) + f (x0 + h1, y0)− f (x0, y0)

=
∂f
∂x

(x0, y0)h1 + ε′1h1 +
∂f
∂y

(x0, y0)h2 + ε′2h2

= Jf (x0, y0) · (h1, h2) + (ε′1, ε
′
2) · (h1, h2)
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Sketch of proof for f : R2 → R

For any ε1 > 0 and ε2 > 0 we can choose h1 > 0 and h2 > 0 such that

0 ≤ |f (x0 + h1, y0 + h2)− f (x0, y0)− Jf (x0, y0) · (h1, h2)|
||(h1, h2)||

=
|(ε′1, ε′2) · (h1, h2)|
||(h1, h2)||

≤ ||(ε′1, ε′2)|| ||(h1, h2)||
||(h1, h2)||

= ||(ε′1, ε′2)||
≤ ||(ε1, ε2)||

So,

lim
(h1,h2)→(0,0)

|f (x0 + h1, y0 + h2)− f (x0, y0)− Jf (x0, y0) · (h1, h2)|
||(h1, h2)||

= 0.

Hence f is differentiable at (x0, y0) with derivative Jf (x0, y0).
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Gradient of f

For f : Ω ⊂ Rn → R, the Jacobian, if it exists, is a 1× n matrix

Jf =

(
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

)
.

Often we think of this as a vector called the gradient of f . That is,

grad(f ) = ∇f =

(
∂f
∂x1

,
∂f
∂x2

, · · · , ∂f
∂xn

)
.

[
Think of ∇ =

(
∂

∂x1
, ∂
∂x2

, · · · , ∂
∂xn

)
.
]

Example: f : R4 → R f (x , y , z , t) = xyz + cos(x + 3t).

∇f =
(
yz − sin(x + 3t), xz , xy ,−3 sin(x + 3t)

)
,

∇f (1, 2, 3, 0) = (6− sin 1, 3, 2,−3 sin 1).

JM Kress (UNSW Maths & Stats) MATH2111 Differentiable Semester 1, 2014 24 / 127



Affine approximation

Let f : Ω ⊂ Rn → R be differentiable at a ∈ Ω. The best affine approximation to
f at a can be written in terms of the gradient vector.

T (x) = f (a) +∇f (a) · (x− a)

For n = 1:
T (x) = f (a) + f ′(a)(x − a).

For n = 2: (a = (a, b))

T (x , y) = f (a, b) +∇f (a, b) · ((x , y)− (a, b))

= f (a, b) +

(
∂f
∂x

(a, b),
∂f
∂y

(a, b)

)
· (x − a, y − b)

= f (a, b) +
∂f
∂x

(a, b)(x − a) +
∂f
∂y

(a, b)(y − b)

z = T (x , y) is the tangent plane to z = f (x , y) at (x , y) = (a, b).
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Tangent planes

Find the equation of the tangent plane to the graph of f (x , y) = x2 + y4 + ex at
the point (1, 0).

∇f (x , y) =
(
fx(x , y), fy (x , y)

)
= (2x + ex , 4y3).

So
f (1, 0) = 1 + e, ∇f (1, 0) = (2 + e, 0)

and the tangent plane is

z = f (1, 0) +∇f (1, 0) · (x − 1, y − 0)

= 1 + e + (2 + e)(x − 1) + 0y
= −1 + (2 + e)x .
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Chain rule

First look at the composition of two affine maps T1 : Rn → Rm and
T2 : Rm → Rp .

T1(x) = y1 + L1x, and T2(x) = y2 + L2x.

The derivatives of these affine maps are DT1 = L1 and DT2 = L2. What is the
derivative of T3 = T2 ◦ T1?

T3(x) = (T2 ◦ T1)(x) = T2(T1(x))

= T2(y1 + L1x)

= y2 + L2(y1 + L1x)

= y2 + L2y1 + L2L1x
= y3 + L3x

where y3 = y2 + L2y1 and L3 = L2L1 and so D(T2 ◦ T1) = L2L1.

So the composition of two affine maps is an affine map and the derivative of the
composition is the the product of the derivatives.
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Chain rule

Consider some differentiable functions f : Rn → Rm and g : Rm → Rp with best
affine approximations T1 and T2.

It seems plausible that g ◦ f is differentiable with best affine approximation
T2 ◦ T1. In that case we would have, D(g ◦ f ) = Dg Df .

Theorem (Chain rule)
Suppose f : Ω ⊂ Rn → Rm and g : Ω′ ⊂ Rm → Rp, with f (Ω) ⊂ Ω′. If f and g
are differentiable, then so is g ◦ f : Ω→ Rp and

Da(g ◦ f ) = Df (a)g Daf ,

or alternatively,
D(g ◦ f )(a) = Dg(f (a)) Df (a).

See Marsden and Tromba for a proof in the case when Df and Dg are continuous
and the Marsden and Tromba internet supplement for a more general proof.
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Chain rule

Example

Let
x = r cos θ, y = r sin θ (∗)

and g(x , y) = xy2. What is
∂g
∂r

?

Since we have explicit expressions, we could calculate directly as

∂

∂r
g(x(r , θ), y(r , θ)) =

∂

∂r

(
r cos θr2 sin2 θ

)
= 3r2 cos θ sin2 θ,

or we could use the chain rule:
∂g
∂r

=
∂g
∂x

∂x
∂r

+
∂g
∂y

∂y
∂r

= y2cos θ + 2xysin θ = 3r2 cos θ sin2 θ.

How does this come from the chain rule stated on the previous slide?

Note that (∗) is really a map f : R2 → R2 and g as a function of r and θ is really
g ◦ f .
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Chain rule

We have f : R2 → R2 and g : R2 → R given by

f (r , θ) = (f1(r , θ), f2(r , θ)) = (r cos θ, r sin θ) ⇒ Df =

∂f1∂r ∂f1
∂θ

∂f2
∂r

∂f2
∂θ


and

g(x , y) = xy2 ⇒ Dg =

(
∂g
∂x

∂g
∂y

)
.

So, the derivative of g ◦ f : R2 → R is

D(g ◦ f ) = Dg Df =

(
∂g
∂x

∂g
∂y

)∂f1∂r ∂f1
∂θ

∂f2
∂r

∂f2
∂θ


=

(
∂g
∂x

∂f1
∂r

+
∂g
∂y

∂f2
∂r

∂g
∂x

∂f1
∂θ

+
∂g
∂y

∂f2
∂θ

)
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Chain rule

Suppose
z = ex2+y and x = cos t, y = sin t.

Find
dz
dt

at t = 0.

dz
dt

=
∂z
∂x

dx
dt

+
∂z
∂y

dy
dt

= ex2+y 2x(− sin t) + ex2+y cos t.

At t = 0,
x = 1, y = 0,

so
dz
dt

∣∣∣∣
t=0

= e1+0.2.1.0 + e1+0.1 = e.
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Chain rule

Define

f : R2 → R, f (x , y) = ex2+y ,

g : R→ R2, g(t) = (cos t, sin t).

Both f and g are differentiable because the partial derivatives of their components
exist and are continuous everywhere.

Df = Jf =

(
∂f
∂x

∂f
∂y

)
, Dg = Jg =

∂g1

∂t
∂g2

∂t

 =

dg1

dt
dg2

dt

 .

D(f ◦ g) = J(f ◦ g) = Jf Jg =

(
∂f
∂x

∂f
∂y

)dg1

dt
dg2

dt

 =
∂f
∂x

dg1

dt
+
∂f
∂y

dg2

dt
.
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Chain rule

Suppose f depends on x , y , z and w and x , y , z and w depend on r , s and t.

Write out the chain rule for
∂f
∂s

.

∂f
∂s

=
∂f
∂x

∂x
∂s

+
∂f
∂y

∂y
∂s

+
∂f
∂z

∂z
∂s

+
∂f
∂w

∂w
∂s

∂f
∂r

=
∂f
∂x

∂x
∂r

+
∂f
∂y

∂y
∂r

+
∂f
∂z

∂z
∂r

+
∂f
∂w

∂w
∂r

∂f
∂t

=
∂f
∂x

∂x
∂t

+
∂f
∂y

∂y
∂t

+
∂f
∂z

∂z
∂t

+
∂f
∂w

∂w
∂t

[Of course we are assuming differentiability of the underlying maps.]
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Chain rule

Let g : R→ R be differentiable and define F : R2 → R by

F (x , y) = g(3x − 4y2).

Show that any such function F must be a solution of the PDE

8y
∂F
∂x

+ 3
∂F
∂y

= 0. (∗)

Let h : R2 → R be defined by h(x , y) = 3x − 4y2. So F = g ◦ h and(
∂F
∂x

∂F
∂y

)
= D(x,y)F = Dh(x,y)g D(x,y)h

=
(
g ′(3x − 4y2)

)(∂h
∂x

∂h
∂y

)
= g ′(3x − 4y2)(3 − 8y)

So
∂F
∂x

= 3g ′(3x − 4y2) and
∂F
∂y

= −8yg ′(3x − 4y2)

and it is now easy to check that F satisfies (∗).
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Directional derivative

For f : Ω ⊂ Rn → R, the partial

derivative
∂f
∂xi

measures the rate

of change of f in the
xi -direction.

We can also ask for the rate of
change in a non-coordinate
direction.

z

y

x
a

z = f (x , y)

Definition
The directional derivative of f : Ω ⊂ Rn → R in the direction of the unit vector û
at a ∈ Ω is

Dûf (a) = f ′û(a) = lim
t→0

f (a + tû)− f (a)

t
.
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Directional derivatives

Let r : I ⊂ R→ Rn (with 0 an interior point of I ) be given by r(t) = a + tû.
Then the directional derivative of f at a in the direction û is

Dûf (a) = f ′û(a) = lim
t→0

f (r(t))− f (r(0))

t
.

If we write F = f ◦ r then

f ′û(a) = lim
t→0

F (t)− F (0)

t
= F ′(0).

For differentiable f , the chain rule says

F ′(0) = Df (a) Dr(0) = ∇f (a) · û.

Theorem
Suppose f : Ω ⊂ Rn → R is differentiable at a and that û is a unit vector. Then
f ′û(a) exists and

f ′û(a) = ∇f (a) · û.
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Directional derivatives

For a differentiable function f , the Cauchy-Schwarz inequality gives

||f ′û(a)|| = ||û · ∇f (a)|| ≤ ||û|| ||∇f (a)|| = ||∇f (a)|| .

Equality occurs when û is proportional to ∇f (a).

The maximum rate of change of f
at a occurs in the direction of
∇f (a).
The minimum rate of change of f at
a occurs in the direction of −∇f (a).

Also,

f ′û(a) = 0 ⇔ û ⊥ ∇f (a).

Directions normal to ∇f (a) are
directions in which f is not changing,
that is, tangent to a level set of f .
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Directional derivatives

Consider f : R2 → R,

f (x , y) = x2 + y2.

(a) Find ∇f .
(b) Sketch some level curves of f
(c) Indicate ∇f at some points on these

curves.

(a) ∇f = (2x , 2y).

(b) The level curves
f (x , y) = 1, 2, 3, 4, 5, 6, 7 are plotted
below.
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Directional derivatives

Find the directional derivative of f in the direction (5, 1) at the point (2, 1) where

f (x , y) = x3 + 2y2.

The function f is differentiable because its partial derivatives exist and are
continuous and so we can calculate the directional derivative using the gradient
vector.

∇f = (3x2, 4y) ⇒ ∇f (2, 1) = (12, 4).

A unit vector in the direction (5, 1) is

û =
1√
26

(5, 1)

so
f ′û(2, 1) = û · ∇f (2, 1) =

1√
26

(5, 1) · (12, 4) =
64√
26
.
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Tangent planes

Consider the surface in R3 defined by the
equation

φ(x , y , z) = c

for some constant c and differentiable
function φ and let

r(t) =
(
f (t), g(t), h(t)

)
be a differentiable curve lying in the
surface with tangent vector given by

r′(t) =
(
f ′(t), g ′(t), h′(t)

)

z

y

x

P

Since all points along r(t) lie in the surface,

φ
(
f (t),g(t),h(t)

)
= c ⇒

(
φ ◦ r

)
(t) = c ⇒ Dr(t)φ Dtr = 0 ⇒ ∇φ · r′(t) = 0.

Hence all curves passing through a point P on the surface have tangent vector
normal to ∇φ and so they all lie in a common plane called the tangent plane at P.
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Tangent planes

Find the tangent plane to the surface

x2 + y2 + z2 = 6

at the point (1, 2,−1).

The surface is
φ(x , y , z) = 6

where φ : R3 → R is the differentiable function given by

φ(x , y , z) = x2 + y2 + z2.

So a normal to the tangent plane at (x , y , z) on the surface is

∇φ = (2x , 2y , 2z).

At (1, 2,−1) the normal is

∇φ(1, 2,−1) = (2, 4,−2)

and hence an equation for the tangent plane at (1, 2,−1) is

2x + 4y − 2z = 12.
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Tangent lines

Find the tangent line to the curve

3x2 + 2y2 = 14

at the point (2, 1).

The curve is φ(x , y) = 14 with φ : R2 → R a
differentiable function given by

φ(x , y) = 3x2 + 2y2.

A normal at (x , y) on the curve is
∇φ = (6x , 4y) and at (2, 1),

∇φ(2, 1) = (12, 4).

Hence a Cartesian equation for the tangent
line is

12x + 4y = 28.

Note that we don’t need to solve for
y to find the tangent line.

[Exercise: check using a ‘first year’

method with y =
√

7− 3
2x

2.]
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Tangent planes

Consider the surface S1 in R3 defined by

S1 = {(x , y , z) : x3 + 2y2 − z = 0}.

At the point (2, 1, 10) find

(i) a parametric equation of the normal line and
(ii) a Cartesian equation of the tangent plane.

The surface is the 0 level set of the differentiable function φ : R3 → R given by
φ(x , y , z) = x3 + 2y2 − z .

So a normal to the surface at (x , y , z) is given by ∇φ = (3x2, 4y2,−1) and at
(2, 1, 10) by ∇φ(2, 1, 10) = (12, 4,−1).

(i) r(t) = (2, 1, 10) + t(12, 4,−1), t ∈ R.
(ii) 12x + 4y − z = 18.
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Tangent planes

Find the best affine approximation to f : R2 → R with f (x , y) = x3 + 2y2 at the
point (2, 1) and compare this with the equation of the tangent plane to S1.

The partial derivatives of f exist and are continuous everywhere. So f is
differentiable and

Df = Jf =
(
3x2 4y

)
or ∇f = (3x2, 4y).

The best affine approximation at (2, 1) is

T (x , y) = f (2, 1) +∇f (2, 1) · (x − 2, y − 1)

= 10 + (12, 4) · (x − 2, y − 1)

= 10 + 12(x − 2) + 4(y − 1)

= −18 + 12x + 4y .

Note that the graph of T give by z = T (x , y) is

z = −18 + 12x + 4y ⇒ 12x + 4y − z = 18
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Tangent planes

Find the curves obtained by the intersection of S1 = {(x , y , z) : x3 + 2y2 − z = 0}
with the planes (i) x = 2, and (ii) y = 1.

Find the tangent vectors to these curves at the point (2, 1, 10) and hence give a
parametric equation for the tangent plane to S1 at (2, 1, 10).

(i) r1(t) = (2, t, 8 + 2t2), r1 : R→ R3.
(ii) r2(t) = (t, 1, t3 + 2), r2 : R→ R3.

Tangent vectors to the curves are

r′1(t) = (0, 1, 4t), and r′2(t) = (1, 0, 3t2)

and at (2, 1, 10) these are

r′1(1) = (0, 1, 4), and r′2(2) = (1, 0, 12).

So the tangent plane is given by

r(s, t) = (2, 1, 10) + t(0, 1, 4) + s(1, 0, 12).
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Tangent planes

Consider g : R3 → R with

g(x , y , z) = 3x2 − 24x + 3y2 − 10y + 3z2 − 59z + 333

and the surface S2 defined as the 0 level set of g , that is,

S2 = {(x , y , z) : g(x , y , z) = 0}.

(i) Describe S2.
(ii) Show that S2 touches S1 tangentially at (2, 1, 10).
(iii) Solve g(x , y , z) = 0 for z in terms of x and y for (x , y) “near” (2, 1).

[That is find f : R2 → R with z = f (x , y) near (2, 1).]
(iv) Find the best affine approximation to f near (2, 1).
(v) What fact involving ∇g makes it possible to find f ?
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Tangent planes

(i)
g(x , y , z) = 3x2 − 24x + 3y2 − 10y + 3z2 − 59z + 333

and

S2 = {(x , y , z) : 3x2 − 24x + 3y2 − 10y + 3z2 − 59z + 333 = 0}.

Completing the squares x , y and z ,

g(x , y , z) = 3(x − 4)2 + 3(y − 5
2 )2 + 3(z − 59

6 )2 − 143
6 .

So S2 is implicitly defined by the equation

3(x − 4)2 + 3(y − 5
2 )2 + 3(z − 59

6 )2 = 143
6

which is a sphere of radius
√

143
18 centred at (4, 5

2 ,
59
6 ).
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Tangent planes

(ii)
g(x , y , z) = 3x2 − 24x + 3y2 − 10y + 3z2 − 59z + 333

and

S2 = {(x , y , z) : 3x2 − 24x + 3y2 − 10y + 3z2 − 59z + 333 = 0}.

First check that g(2, 1, 10) = 0 so that (2, 1, 10) lies on S2.

[We previously found that a normal to the tangent plane of S1 at (2, 1, 10) was
∇φ(2, 1, 10) = (12, 4,−1).]

Now, a normal to the tangent plane of S2 is given by

∇g =
(
6(x − 4), 6(y − 5

3 ), 6(z − 59
6 )
)
⇒ ∇g(2, 1, 10) = (−12,−4, 1).

Since one normal is a multiple of the other, the two tangent planes are parallel.
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Tangent planes

(iii)
g(x , y , z) = 3x2 − 24x + 3y2 − 10y + 3z2 − 59z + 333

and

S2 = {(x , y , z) : 3x2 − 24x + 3y2 − 10y + 3z2 − 59z + 333 = 0}.

3(x − 4)2 + 3(y − 5
2 )2 + 3(z − 59

6 )2 − 143
6 = 0

⇒ 3(z − 59
6 )2 = 143

6 − 3(x − 4)2 − 3(y − 5
2 )2

⇒ z = 59
6 +

√
143
18 − (x − 4)2 − (y − 5

2 )2

(iv)

The best affine approximation is given by the tangent plane that has already been
found.

T (x , y) = 10 + 12(x − 2) + 4(y − 1).
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Taylor series

Taylor’s theorem says for a suitably continuous and differentiable function
f : R→ R,

f (x) = Pn,a(x) + Rn,a(x)

where Pn,a(x) is the polynomial

Pn,a(x) = f (a) + f ′(a)(x − a) +
1
2!
f ′′(a)(x − a)2 + · · ·+ 1

n!
f (n)(a)(x − a)n

and the remainder Rn,a(x) is

Rn,a(x) =
1

(n + 1)!
f (n+1)(z)(x − a)n+1

for some z between x and a. When Rn,a(x) is “small enough”,

f (x) ' Pn,a(x)

and P0,a(x), P1,a(x), P2,a(x), P3,a(x), . . . are the the best constant, affine,
quadratic, cubic, . . . approximations to f (x).
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Taylor series

Taylor’s theorem can be generalised to f : Rn → R.

Consider f : R2 → R and try to write f (x , y) in terms of
f and it’s derivatives at (a, b). Let

g(t) = f (u, v), u = a + t(x − a), v = b + t(y − b).

For g continuous on [0, t], Taylor’s theorem says

g(t) = g(0) + R0(t) where R0(t) = g ′(z0)t

(a, b)

(x , y)
t = 0

t = 1

for some z0 between 0 and t provided g is differentiable on [0, t], and

g(t) = g(0) + g ′(0)t + R1(t) where R1(t) =
1
2!
g ′′(z1)t2

for some z1 between 0 and t provided g ′ is differentiable on [0, t], and

g(t) = g(0) + g ′(0)t +
1
2!
g ′′(0)t2 + R2(t) where R2(t) =

1
3!
g ′′′(z2)t3

for some z2 between 0 and t provided g ′′ is differentiable on [0, t], and so on.
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Taylor series

u = a + t(x − a), v = b + t(y − b) ⇒ du
dt

= x − a,
dv
dt

= y − b.

g(t) = f (u, v) g ′(t) = f1(u, v)
du
dt

+ f2(u, v)
dv
dt

= f1(u, v)(x − a) + f2(u, v)(y − b)

g ′′(t) =
d
dt

(
f1(u, v)(x − a) + f2(u, v)(y − b)

)
=

(
f11(u, v)

du
dt

+ f12(u, v)
dv
dt

)
(x − a)

+
(
f21(u, v)

du
dt

+ f22(u, v)
dv
dt

)
(y − b)

= f11(u, v)(x − a)2 + 2f12(u, v)(x − a)(y − b) + f22(u, v)(y − b)2

g ′′′(t) = f111(u, v)(x−a)3 +3f112(u, v)(x−a)2(y −b) +3f122(u, v)(x−a)(y −b)2

+f222(u, v)(y − b)3.
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Taylor series

u = a + t(x − a), v = b + t(y − b) and g(t) = f (u, v).

Recall that the 0th order form of Taylor’s theorem (MVT) says, for g continuous
on [0, t] and differentiable on (0, t),

g(t) = g(0) + R0(t) where R0(t) = g ′(z0)t.

Now, using

g(t) = f (u, v), g ′(t) = f1(u, v)(x − a) + f2(u, v)(y − b)

gives the multivariable version

f (x , y) = g(1) = P0(1) + R0(1)

= f (a, b) + f1(c0, d0)(x − a) + f2(c0, d0)(y − b)

for some (c0, d0) on the line segment between (a, b) and (x , y).[
(c0, d0) = (a + z0(x − a), b + z0(y − b))

]
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Taylor series

The 1st order form of Taylor’s theorem says, for g ′ continuous on [0, t] and g ′

differentiable on (0, t),

g(t) = g(0) + g ′(0)t + R1(t) where R1(t) =
1
2!
g ′′(z1)t2.

Now, using

g(t) = f (u, v), g ′(t) = f1(u, v)(x − a) + f2(u, v)(y − b)

g ′′(t) = f11(u, v)(x − a)2 + 2f12(u, v)(x − a)(y − b) + f22(u, v)(y − b)2

gives the multivariable version

f (x , y) = g(1) = P1(1) + R1(1)

= f (a, b) + f1(a, b)(x − a) + f2(a, b)(y − b)

+
1
2

(
f11(c1, d1)(x − a)2 + 2f12(c1, d1)(x − a)(y − b)

+ f22(c1, d1)(y − b)2
)

for some (c1, d1) on the line segment between (a, b) and (x , y).[
(c1, d1) = (a + z1(x − a), b + z1(y − b))

]
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Taylor series

Taylor’s theorem says, for g ′′ continuous on [0, t] and g ′′ differentiable on (0, t),

g(t) = g(0) + g ′(0)t + 1
2!g
′′(0)t2 + R2(t) where R2(t) = 1

3!g
′′′(z2)t3.

g(t) = f (u, v), g ′(t) = f1(u, v)(x − a) + f2(u, v)(y − b)

g ′′(t) = f11(u, v)(x − a)2 + 2f12(u, v)(x − a)(y − b) + f22(u, v)(y − b)2

g ′′′(t) = f111(u, v)(x − a)3 + 3f112(u, v)(x − a)2(y − b)

+ 3f122(u, v)(x − a)(y − b)2 + f222(u, v)(y − b)3.

gives the multivariable version (for some (c2, d2) between (a, b) and (x , y)),

f (x , y) = g(1) = P2(1) + R2(1)

= f (a, b) + f1(a, b)(x − a) + f2(a, b)(y − b) +
1
2

(
f11(a, b)(x − a)2

+2f12(a, b)(x − a)(y − b) + f22(a, b)(y − b)2
)

+
1
3!

(
f111(c2, d2)(x − a)3 + 3f112(c2, d2)(x − a)2(y − b)

+ 3f122(c2, d2)(x − a)(y − b)2 + f222(c2, d2)(y − b)3
)
.
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Taylor series

Definition
f : Ω ⊂ Rn → R is C r on an open set Ω ⊂ Rn if all partial derivatives of f of
order ≤ r exist and are continuous.

Theorem (Taylor’s Theorem)
Let f : Ω ⊂ Rn → R be C r on the open set Ω. Let a ∈ Ω be such that the line
segment joining a and x lies in Ω. Then

f (x) = Pr ,a(x) + Rr ,a(x)

where, for some point z on the line segment joining x and a,

Pr ,a(x) = f (a) +
r−1∑
k=1

1
k!

Dk f (a) · (x− a)k , Rr ,a(x) =
1
r !
Dr f (z) · (x− a)r .

Note that the Dr f (z) · (x− a)r is not a dot product. It represents the terms that
we have found in the last few slides and their generalisations.
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Taylor series

Find the Taylor polynomial of order 2 about
(
1,−π

2

)
for f (x , y) = sin(x2y).

at
(
1,−π

2

)
f (x , y) = sin(x2y) −1
fx(x , y) = 2xy cos(x2y) 0
fy (x , y) = x2 cos(x2y) 0
fxx(x , y) = 2y cos(x2y)− 4x2y2 sin(x2y) π2

fxy (x , y) = 2x cos(x2y)− 2x3y sin(x2y) −π
fyy (x , y) = −x4 sin(x2y) 1

P2,(1,−π
2 )

(x , y) = −1 + 0(x − 1) + 0
(
y −

(
−π
2

))
+

1
2

(
π2(x − 1)2

+2(−π)(x − 1)
(
y −

(
−π
2

))
+
(
y −

(
−π
2

))2
)

= −1 +
π2

2
(x − 1)2 − π(x − 1)

(
y −

(
−π
2

))
+

1
2

(
y −

(
−π
2

))2
.
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Taylor series

Find the Taylor polynomial of order 2 about (4, 8) for f (x , y) =
√
x 3
√
y .

at (4, 8)

f (x , y) = x
1
2 y

1
3 4

fx(x , y) = 1
2x
− 1

2 y
1
3 1

2

fy (x , y) = 1
3x

1
2 y−

2
3 1

6

fxx(x , y) = − 1
4x
− 3

2 y
1
3 − 1

16

fxy (x , y) = 1
6x
− 1

2 y−
2
3 1

48

fyy (x , y) = − 2
9x

1
2 y−

5
3 − 1

72

P2,(4,8)(x , y) = 4 +
1
2

(x − 4) +
1
6

(y − 8)

+
1
2

(
− 1
16

(x − 4)2 + 2.
1
48

(x − 4)(y − 8) +

(
− 1
72

)
(y − 8)2

)
.
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Taylor series

Use Taylor polynomials for
√
x 3
√
y about the point (4, 8) to approximate to√

3.98 3
√
8.03 using

(i) the constant and linear terms, and
(ii) terms up to second order.

(i) f (3.98, 8.03) ' P1,(4,8)(3.98, 8.03)

= 4 +
1
2

(3.98− 4) +
1
6

(8.03− 8)

= 3.995
(ii) f (3.98, 8.03) ' P2,(4,8)(3.98, 8.03)

= 4 +
1
2

(3.98− 4) +
1
6

(8.03− 8) +
1
2

(
− 1
16

(3.98− 4)2

+ 2× 1
48

(3.98− 4)(8.03− 8) +

(
− 1
72

)
(8.03− 8)2

)
= 3.99496875

[Maple gives 3.99496873 . . .]
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Taylor series

Find the Taylor polynomial of

f (x , y) = sin xey/2

including terms up to order 3 about (0, 0).

sin xey/2 =

(
x − x3

3!
+

x5

5!
− · · ·

)(
1 +

y
2

+

( y
2

)2
2!

+

( y
2

)3
3!

+

( y
2

)4
4!

+ · · ·

)

= x +
xy
2
− x3

6
+

xy2

8
+ · · ·

So,

P3,(0,0)(x , y) = x +
xy
2
− x3

6
+

xy2

8
.
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Maxima, minima and saddle points

Definition
Suppose f : Ω ⊂ Rn → R. Then

a ∈ Ω is an absolute or global maximum of f if f (a) ≥ f (x) for all x ∈ Ω.
a ∈ Ω is an absolute or global minimum of f if f (a) ≤ f (x) for all x ∈ Ω.
a ∈ Ω is a local maximum of f if there is an open set A containing a such
that f (a) ≥ f (x) for all x ∈ Ω ∩ A.
a ∈ Ω is a local minimum of f if there is an open set A containing a such
that f (a) ≤ f (x) for all x ∈ Ω ∩ A.
a ∈ Ω is a stationary point of f if f is differentiable at a and ∇f (a) = 0.
a ∈ Ω is a saddle point of f if it is a stationary point of f but is neither a
local maximum nor minimum point of f .

JM Kress (UNSW Maths & Stats) MATH2111 Differentiable Semester 1, 2014 61 / 127

Maxima, minima and saddle points

Theorem
Suppose f : Ω ⊂ Rn → R. Then local and maxima and minima can only occur at
a ∈ Ω where a satisfies one of the following:
(1) a is a stationary point,
(2) a lies on the boundary of Ω or
(3) f is not differentiable at a.

Definition
Points satisfying at least one of (1), (2) or (3) in the theorem above are called
critical points.
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Maxima, minima and saddle points

Consider Ω, the region of R2 bounded by x = 0, y = 0
and y = x + 3. Find the maximum and minimum values
of f : Ω→ R, given by,

f (x , y) = x3 − y3 − 3xy .

f is continuous and differentiable on Ω which is compact.
Hence f (Ω) is compact and so maximum and minimum
values exist and are attained on Ω.

y

x−3

3

Ω

Since f is differentiable everywhere, the extrema must occur at (1) stationary
points f or (2) boundary points of Ω.

Stationary points of f occur when

∇f = 0 ⇔ (3x2 − 3y ,−3y2 − 3x) = (0, 0) ⇔ y = x2 and x = −y2

⇒ y = x2 ⇒ x4 + x = 0 ⇒ (x3 + 1)x = 0.
Hence the only stationary points of f are (0, 0) and (−1, 1). Also note that

f (0, 0) = 0 and f (−1, 1) = 1.
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Maxima, minima and saddle points

Divide the boundary into 3 pieces. First consider B1.

B1 = {(0, t) : 0 ≤ t ≤ 3},
B2 = {(t, 0) : −3 ≤ t ≤ 0},
B3 = {(t, t + 3) : −3 ≤ t ≤ 0}.

y

x−3

3

Ω
B1

B2

B3

3

−27

t

f (0, t) On B1
f (0, t) = 03 − t3 − 0 = −t3

for t ∈ [0, 3].

So the max on B1 is at (0, 0) where f (0, 0) = 0 and the
min is at (0, 3) where f (0, 3) = −27.
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Maxima, minima and saddle points

Next consider B2.

B1 = {(0, t) : 0 ≤ t ≤ 3},
B2 = {(t, 0) : −3 ≤ t ≤ 0},
B3 = {(t, t + 3) : −3 ≤ t ≤ 0}.

y

x−3

3

Ω
B1

B2

B3

−3

−27

t

f (t, 0) On B2
f (t, 0) = t3 − 03 − 0 = t3

for t ∈ [−3, 0].

So the max on B2 is at (0, 0) where f (0, 0) = 0 and the
min is at (−3, 0) where f (−3, 0) = −27.
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Maxima, minima and saddle points

Lastly consider B3.

B1 = {(0, t) : 0 ≤ t ≤ 3},
B2 = {(t, 0) : −3 ≤ t ≤ 0},
B3 = {(t, t + 3) : −3 ≤ t ≤ 0}.

y

x−3

3

Ω
B1

B2

B3

−3

−27

t

f (t, t + 3) On B3

f (t, t +3) = t3− (t +3)3−3t(t +3) = −3(4t2 +12t +9)

for t ∈ [−3, 0]. Now, g(t) = f (t, t + 3) has a stationary
point when

8t + 12 = 0 ⇒ t = − 3
2 .

Extreme values can occur on B3 at the end points
(already considered) or the stationary point where

f
(
− 3

2 ,
3
2

)
= 0.
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Maxima, minima and saddle points

So we have a number of candidate points for the extreme
values of f .

f (−1, 1) = 1
f (0, 0) = 0
f (0, 3) = −27

f (−3, 0) = −27
f (−1.5, 1.5) = 0

y

x−3

3

Ω
B1

B2

B3

Hence the maximum of f on Ω is 1 and the minimum value of f on Ω is −27.
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Classification of stationary points

The following functions f : R2 → R have a stationary point at (0, 0).

Is it a local maximum, minimum or saddle point?

(i) f (x , y) = x2 + y2

(ii) f (x , y) = −x2 − y2

(iii) f (x , y) = x2 − y2

(iv) f (x , y) = xy
(v) f (x , y) = x2 + y4

(vi) f (x , y) = x2 − y4

(vii) f (x , y) = x2 − 6xy + y2

(viii) f (x , y) = 3x2 − 2xy + 3y2
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Classification of stationary points

(i) f (x , y) = x2 + y2

Local minimum at (0, 0).

(ii) f (x , y) = −x2 − y2

Local maximum at (0, 0).
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Classification of stationary points

(iii) f (x , y) = x2 − y2

Along y = 0, f (x , 0) = x2 and
(0, 0) is a local minimum.
Along x = 0, f (0, y) = −y2 and
(0, 0) is a local maximum.

For all ε > 0,( ε
2
, 0
)
∈ B((0, 0), ε) with f

( ε
2
, 0
)

=
ε2

4

and(
0,
ε

2

)
∈ B((0, 0), ε) with f

(
0,
ε

2

)
= −ε

2

4
.

So,
f
(
0,
ε

2

)
< f (0, 0) < f

( ε
2
, 0
)
.

That is, (0, 0) is a stationary point that is neither
a local max nor min and hence is a saddle point.
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Classification of stationary points

(iv) f (x , y) = xy Along y = x ,

f (x , x) = x2

which has a local minimum at (0, 0).
Along y = −x ,

f (x ,−x) = −x2

which has a local maximum at (0, 0).
So (0, 0) is neither a local maximum nor
local minimum. Hence f has a saddle
point at (0, 0).
Note that

f (x , y) =
1
4

(
(x + y)2 − (x − y)2

)
.
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Classification of stationary points

(v) f (x , y) = x2 + y4

Local minimum at (0, 0).

(iv) f (x , y) = x2 − y4

Saddle point at (0, 0).
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Classification of stationary points

(vii) f (x , y) = x2 − 6xy + y2

Saddle point at (0, 0).

(viii) f (x , y) = 3x2 − 2xy + 3y2

Local minimum at (0, 0).
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Classification of stationary points

(vii)

f (x , y) = x2 − 6xy + y2

=
(
x y

)( 1 −3
−3 1

)(
x
y

)
.

Let

H =

(
1 −3
−3 1

)
.

H has eigenvalues and eigenvectors

λ1 = −2, v1 =

(
1
1

)
,

λ2 = 4, v2 =

(
−1
1

)
.

So we can orthoganally diagonalise H.

Let

P =
1√
2

(
1 −1
1 1

)
and then

P−1 = PT =
1√
2

(
1 1
−1 1

)
.

So

PTHP = D =

(
−2 0
0 4

)
.

Now make a change of variables(
x
y

)
= P

(
X
Y

)
.
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Classification of stationary points

(
x
y

)
= P

(
X
Y

)
. ⇒

(
x y

)
=
(
X Y

)
PT .

So,

f (x , y) =
(
x y

)
H
(
x
y

)
=
(
X Y

)
PTHP

(
X
Y

)
=
(
X Y

)(−2 0
0 4

)(
X
Y

)
= −2X 2 + 4Y 2

Note that (
X
Y

)
= PT

(
x
y

)
=

1√
2

(
1 1
−1 1

)(
x
y

)
=

(
1√
2

(x + y)
1√
2

(y − x)

)
.

So,

f (x , y) = −2
( 1√

2
(x + y)

)2
+ 4
( 1√

2
(y − x)

)2
= −(x + y)2 + 2(x − y)2.
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Classification of stationary points

(viii)

f (x , y) =
(
x y

)( 3 −1
−1 3

)(
x
y

)
The eigenvalues and eigenvectors of

H =

(
3 −1
−1 3

)
are

λ1 = 2, v1 =

(
1
1

)
,

λ2 = 4, v2 =

(
−1
1

)
.

Diagonalising and rotating the coordinates leads to

f (x , y) = 2X 2 + 4Y 2 = (x + y)2 + 2(x − y)2.
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Classification of stationary points

The ‘Taylor series’ of f at a stationary point (a, b) is

f (x , y) = f (a, b) +
((((((((((((
∇f (a, b) ·

(
(x , y)− (a, b)

)
+

1
2!

(
x − a y − b

) ∂2f
∂x2 (a, b) ∂2f

∂y∂x (a, b)

∂2f
∂x∂y (a, b) ∂2f

∂y2 (a, b)

(x − a
y − b

)
+ · · ·

(
terms involving higher powers of (x − a) and (y − b)

)
since ∇f (a, b) = (0, 0).

For (x , y) close to (a, b) the nature of the stationary point will be determined by
the eigenvalues of the matrix

H =

 ∂2f
∂x2 (a, b) ∂2f

∂y∂x (a, b)

∂2f
∂x∂y (a, b) ∂2f

∂y2 (a, b)

 .
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Classification of stationary points

Suppose f : Ω ⊂ R2 → R is C 2 and has a stationary point at (a, b), that is,
∇f (a, b) = 0. So Taylor’s theorem says that

f (x , y) = f (a, b) + R1,(a,b)(x , y)

where the remainder term is given by

R1,(a,b)(x , y) =
1
2!

(
x − a y − b

)
H
(
x − a
y − b

)

where H =

 ∂2f
∂x2 (c , d) ∂2f

∂y∂x (c , d)

∂2f
∂x∂y (c , d) ∂2f

∂y2 (c , d)


for some point (c , d) between (a, b) and (x , y).

Can the eigenvalues of H be used to determine whether f has a local max, min or
saddle point at (a, b)? H is made of partial derivatives evaluated at an unknown
point (c , d). Can we determine the nature of the stationary point using partial
derivatives calculated at (a, b)? Yes, on a sufficiently small ball. Why?
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Maxima, minima and saddle points

Definition
For f : Ω ⊂ Rn → R the Hessian of f at a is the n × n matrix

H(f , a) =



∂2f
∂x2

1
(a)

∂2f
∂x2∂x1

(a) · · · ∂2f
∂xn∂x1

(a)

∂2f
∂x1∂x2

(a)
∂2f
∂x2

2
(a) · · · ∂2f

∂xn∂x2
(a)

...
...

. . .
...

∂2f
∂x1∂xn

(a)
∂2f

∂x2∂xn
(a) · · · ∂2f

∂x2
n

(a)


.
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Classification of stationary points

The signs of the eigenvalues of

H(f , (a, b)) =

 ∂2f
∂x2 (a, b) ∂2f

∂y∂x (a, b)

∂2f
∂x∂y (a.b) ∂2f

∂y2 (a, b)


can be determined from the signs of the trace2 and determinant of H(f , (a, b)).

Tr
(
H(f , (a, b))

)
= sum of eigenvalues

and
det
(
H(f , (a, b))

)
= product of eigenvalues.

These are continuous functions of the entries in the matrix which are continuous
by the assumption that f is C 2. Hence there must be a open ball around (a, b) on
which the trace and determinant (and hence the eigenvalues) of the Hessian have
the same signs as those of the Hessian at (a, b).

2The trace of a matrix is the sum of its diagonal entries.
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Maxima, minima and saddle points

Find the eigenvalues of the Hessian of f at (0, 0) for each of the functions we
considered last lecture.

H(f , (0, 0)) =


∂2f
∂x2

1
(0, 0)

∂2f
∂x2∂x1

(0, 0)

∂2f
∂x1∂x2

(0, 0)
∂2f
∂x2

2
(0, 0)

 .

(i) f (x , y) = x2 + y2

H(f , (0, 0)) =

(
2 0
0 2

)
.

Eigenvalues are 2, 2.

(ii) f (x , y) = −x2 − y2

H(f , (0, 0)) =

(
−2 0
0 −2

)
.

Eigenvalues are −2,−2.
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Maxima, minima and saddle points

(iii) f (x , y) = x2 − y2

H(f , (0, 0)) =

(
2 0
0 −2

)
.

Eigenvalues are 2,−2.
(iv) f (x , y) = xy

H(f , (0, 0)) =

(
0 1
1 0

)
.

Eigenvalues are 1,−1.
(v) f (x , y) = x2 + y4

H(f , (0, 0)) =

(
2 0
0 0

)
.

Eigenvalues are 2, 0.

(vi) f (x , y) = x2 − y4

H(f , (0, 0)) =

(
2 0
0 0

)
.

Eigenvalues are 2, 0.
(vii) f (x , y) = x2 − 6xy + y2

H(f , (0, 0)) =

(
2 −6
−6 2

)
.

Eigenvalues are −4, 8.
(viii) f (x , y) = 3x2 − 2xy + 3y2

H(f , (0, 0)) =

(
6 −2
−2 6

)
.

Eigenvalues are 4, 8.
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Classification of stationary points

Definition
An n × n matrix H is

positive definite ⇔ all eigenvalues are > 0
positive semidefinite ⇔ all eigenvalues are ≥ 0
negative definite ⇔ all eigenvalues are < 0
negative semidefinite ⇔ all eigenvalues are ≤ 0

Theorem (Alternative test — Sylvester’s criterion)
If Hk is the upper left k × k submatrix of H and 4k = det Hk then H is

positive definite ⇔ 4k > 0 for all k
positive semidefinite ⇒ 4k ≥ 0 for all k
negative definite ⇔ 4k < 0 for all odd k and

4k > 0 for all even k
negative semidefinite ⇒ 4k ≤ 0 for all odd k and

4k ≥ 0 for all even k
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Classification of stationary points

Theorem
Suppose f : Ω ⊂ Rn → R is C 2 and ∇f (a) = 0 at an interior point a of Ω. Then

H(f , a) is positive definite ⇒ f has a local minimum at a.
H(f , a) is negative definite ⇒ f has a local maximum at a.
f has a local minimum at a ⇒ H(f , a) is positive semidefinite.
f has a local maximum at a ⇒ H(f , a) is negative semidefinite.
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Classification of stationary points

For f : R2 → R with a stationary point at (a, b),

41 =
∂2f
∂x2 (a, b) and 42 =

∂2f
∂x2 (a, b)

∂2f
∂y2 (a, b)−

(
∂2f
∂x∂y

(a, b)

)2

.

Then
41 > 0 and 42 > 0 (two positive eigenvalues) ⇒ (a, b) is a local minimum.
41 < 0 and 42 > 0 (two negative eigenvalues) ⇒ (a, b) is a local maximum.
local minimum at (a, b) ⇒ 41 ≥ 0 and 42 ≥ 0 (no negative eigenvalues).
local maximum at (a, b) ⇒ 41 ≤ 0 and 42 ≥ 0 (no positive eigenvalues).

Notes:
42 < 0 ⇒ (a, b) is a saddle point (one positive and one negative eigenvalue).
The semidefinite case can also be a saddle point.
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Classification of stationary points

Find and classify the stationary points of

f (x , y) = x3 + 6x2 + 3y2 − 12xy + 9x .

Stationary points occur when ∇f = 0, that is,

(3x2 + 12x − 12y + 9, 6y − 12x) = (0, 0)

⇒

{
3x2 + 12x − 12y + 9 = 0 (1)

6y − 12x = 0 (2)

(2) ⇒ y = 2x which when substituted into (1) becomes

3(x − 3)(x − 1) = 0.

So x = 1 ⇒ y = 2 or x = 3 ⇒ y = 6.

So f has stationary points at (1, 2) and (3, 6).
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Classification of stationary points

f (x , y) = x3 + 6x2 + 3y2 − 12xy + 9x . ⇒ H(f , (x , y)) =

(
6x + 12 −12
−12 6

)
.

At (1, 2):

H(f , (1, 2)) =

(
18 −12
−12 6

)

42 = 18× 6− (−12)× (−12)

= −36 < 0.

So (1, 2) is a saddle point of f .

At (3, 6):

H(f , (3, 6)) =

(
30 −12
−12 6

)

41 = 30 > 0,
42 = 30× 6− (−12)× (−12)

= 36 > 0.

So (3, 6) is a local minimum point of f .
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Classification of stationary points

Find and classify the stationary points of

f (x , y , z) = yx2 + zy2 + z2 − 2yx − 2zy + y − z .

∇f = 0 ⇒


2xy − 2y = 0 (1)

x2 + 2zy − 2x − 2z + 1 = 0 (2)

y2 + 2z − 2y − 1 = 0 (3)

(1) is 2y(x − 1) = 0 so there are two cases

y = 0:
(3) ⇒ z = 1

2 .
(2) ⇒ x = 0 or x = 2.
So (0, 0, 1

2 ) and (2, 0, 1
2 ) are stationary

points.

x = 1:
(2) ⇒ z = 0 or y = 1.
For z = 0, (3) ⇒ y = 1±

√
2.

For y = 1, (3) ⇒ z = 1.
So, (1, 1±

√
2, 0) and (1, 1, 1) are

stationary points.

f has 5 stationary points: (0, 0, 1
2 ), (2, 0, 1

2 ), (1, 1+
√
2, 0), (1, 1−

√
2, 0), (1, 1, 1).
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Classification of stationary points

To classify we need H(f , (x , y)) =

 2y 2x − 2 0
2x − 2 2z 2y − 2

0 2y − 2 2

 .

H(f , (0, 0,
1
2

)) =

 0 −2 0
−2 1 −2
0 −2 2


41 = 0, 42 =

∣∣∣∣ 0 −2
−2 1

∣∣∣∣ = −4

43 =

∣∣∣∣∣∣
0 −2 0
−2 1 −2
0 −2 2

∣∣∣∣∣∣ = −8

(0, 0, 1
2 ) is a saddle point as the Hessian

is neither positive semidefinite nor
negative semidefinite.
[Eigenvalues are 1, −2, 4.]

H(f , (1, 1, 1)) =

2 0 0
0 2 0
0 0 2


41 = 2
42 = 4

43 = 8

(1, 1, 1) is a local minimum point as the
Hessian is positive definite.
[Eigenvalues are 2, 2, 2.]
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Classification of stationary points

H(f , (2, 0, 1
2 )) =0 2 0

2 1 −2
0 −2 2


41 = 0
42 = −4

43 = −8

(2, 0, 1
2 ) is a saddle

point as the Hessian is
neither positive
semidefinite nor
negative semidefinite.
[E’values are 1, −2, 4.]

H(f , (1, 1 +
√
2, 0)) =2 + 2

√
2 0 0

0 0 2
√
2

0 2
√
2 2


41 = 2 + 2

√
2

42 = 0

43 = −16− 16
√
2

(1, 1 +
√
2, 0) is a saddle

point as the Hessian is
neither positive semidefinite
nor negative semidefinite.
[E’values are −2, 4,
2 + 2

√
2.]

H(f , (1, 1−
√
2, 0)) =2− 2

√
2 0 0

0 0 −2
√
2

0 −2
√
2 2


41 = 2− 2

√
2

42 = 0

43 = −16 + 16
√
2

(1, 1−
√
2, 0) is a saddle

point as the Hessian is
neither positive semidefinite
nor negative semidefinite.
[E’values are −2, 4,
2− 2

√
2.]
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Lagrange multipliers

We wish to find the extreme values of a function subject to a constraint (or
constraints).

We want to solve problems like:
(a) Find the extreme values of 2x + 3y subject to the constraint x2 + y2 = 4.
(b) Find the minimum value of x2 + y2 subject to the constraint 2x + 3y = 20.
(c) Find the minimum value of x2 + y2 subject to the constraint xy = 16.

In the first case, the set of points satisfying the constraint

Ω = {(x , y) : x2 + y2 = 4}

is compact and the function we are applying to those points

f (x , y) = 2x + 3y

is continuous. So we are guaranteed that f (Ω) has extreme values.

For the other two cases the existence of a minimum value may need to be
considered on a case by case basis.

We will attempt to find candidate points for the extreme values.
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Lagrange multipliers

Consider two differentiable functions

f : Rn → R and g : Rn → R

and try to find extreme values of f subject to the constraint

g(x) = c

for some constant c .

What is the maximum or minimum value
of f on this surface?

g(x) = c
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Lagrange multipliers

For differentiable functions f : Rn → R and g : Rn → R look for points where f
has a maximum or minimum value on the hypersurface

S = {x ∈ Rn : g(x) = c}.

Let r : I ⊂ R→ Rn be a curve in the hypersurface S , that is

g(r1(t), r2(t), . . . , rn(t)) = c , that is (g ◦ r)(t) = c .

Points that maximise or minimise f on S should also maximise or minimise f on
any curve passing through those points. So we look for stationary points of
h = f ◦ r.

h′(t) = 0 ⇒ D(f ◦ r)(t) = 0 ⇒ ∇f (r(t)) · r′(t) = 0.

We want this condition to hold for all curves through the candidate point and
hence ∇f must be normal to the tangent plane to S . That is, provided ∇g 6= 0,
there must be a scalar function λ (Lagrange multiplier) such that

∇f = λ∇g .
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Lagrange multipliers

Theorem
Suppose f : Rn → R and g : Rn → R are differentiable and

S = {x ∈ Rn : g(x) = c}

defines a smooth surface in Rn. If a local maximum or minimum value of f on S
occurs at a then ∇f (a) and ∇g(a) are parallel. Thus if ∇g(a) 6= 0, then there
exists λ ∈ R such that

∇f (a) = λ∇g(a).

Note that this theorem only gives us candidate points for where to look for
maxima and minima. There is no guarantee that a maximum or minimum of f on
S exists.
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Lagrange multipliers

Find the maximum and minimum values of 2x + 3y subject to x2 + y2 = 4.

y

x

The constraint x2 + y2 = 4 is
purple. Some contours of 2x + 3y
are blue.

2x + 3y = 7.2111 . . .
2x + 3y = 7
2x + 3y = 6
2x + 3y = 5
2x + 3y = 4

The constraint set is compact and
f is continuous. Hence f attains a
maximum and minimum value on
the constraint set.
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Lagrange multipliers

Extreme values of f (x , y) = 2x + 3y subject to g(x , y) = x2 + y2 = 4 occur when

∇f = λ∇g ⇒ (2, 3) = λ(2x , 2y).

So,
2 = 2xλ (1)

3 = 2yλ (2)

x2 + y2 = 4 (3)

 ⇒ λ =
1
x

=
3
2y

⇒ y =
3x
2
.

Substituting into the constraint equation (3) gives

x2 +

(
3x
2

)2

= 4 ⇒ 13x2

4
= 4 ⇒ (x , y) =

(
± 4√

13
,± 6√

13

)
.

Evaluating f at the two candidate points,

f
(

4√
13
,

6√
13

)
= 4
√
13 and f

(
− 4√

13
,− 6√

13

)
= −4

√
13.

These are the maximum and minimum values of f (x , y) subject to g(x , y) = 4.
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Lagrange multipliers

Find the maximum and minimum values of x2 + y2 subject to 2x + 3y = 20.

y

x

The constraint

2x + 3y = 20

is purple. Some contours of
x2 + y 2 are blue.
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Lagrange multipliers

For extreme values of f (x , y) = x2 + y2 subject to g(x , y) = 2x + 3y = 20,

∇f = λ∇g ⇒ (2x , 2y) = λ(2, 3).

So,
2x = 2λ (1)

2y = 3λ (2)

2x + 3y = 20 (3)

 ⇒ λ = x =
2y
3

⇒ y =
3x
2
.

Substituting into the constraint equation (3) gives

2x + 3
(
3x
2

)
= 20 ⇒ x =

40
13

⇒ (x , y) =

(
40
13
,
60
13

)
.

Evaluating f at this candidate point,

f
(
40
13
,
60
13

)
=

400
13

.

It is clear that there is no maximum and this is the minimum.
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Lagrange multipliers

Find the maximum and minimum values of x2 + y2 subject to xy = 16.

y

x

The constraint

xy = 16

is purple. Some contours of
x2 + y 2 are blue.
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Lagrange multipliers

For extreme values of f (x , y) = x2 + y2 subject to g(x , y) = xy = 16,

∇f = λ∇g ⇒ (2x , 2y) = λ(y , x).

So,

2x = yλ (1)

2y = xλ (2)

xy = 16 (3)

 ⇒ λ =
2x
y

=
2y
x

⇒ y2 = x2 ⇒ y = ±x .

Substituting into the constraint equation (3) gives

±x2 = 16 ⇒ x = ±4 ⇒ (x , y) = (±4,±4).

Evaluating f at these this candidate points,

f (4, 4) = 32 and f (−4,−4) = 32.

It is clear that there is no maximum and this is the minimum.
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Lagrange multipliers

Find the maximum and minimum values (if they exist) of f (x , y , z) =
1
xyz

on the

ellipsoid g(x , y , z) = 9x2 + y2 + z2 = 1 in the region where x > 0, y > 0, z > 0.

∇f = λ∇g ⇒
(
− 1
x2yz

, − 1
xy2z

, − 1
xyz2

)
= λ(18x , 2y , 2z).

− 1
x2yz

= 18λx (1)

− 1
xy2z

= 2λy (2)

− 1
xyz2 = 2λz (3)

9x2 + y2 + z2 = 1 (4)


⇒



− 1
xyz

= 18λx2 = 2λy2 = 2λz2

⇒ 9x2 = y2 = z2

(4)⇒ 3z2 = 1 ⇒ z =
1√
3

⇒ (x , y , z) =

(
1

3
√
3
,
1√
3
,
1√
3

)
.

Evaluating f at this candidate point,

f
(

1
3
√
3
,
1√
3
,
1√
3

)
= 9
√
3.

It is clear that there is no maximum and this is the minimum.
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Lagrange multipliers

If a is a maximum or minimum point of a differentiable function f : Rn → R
subject to r independent3 constraints

g1(x) = 0, g2(x) = 0, . . . , gr (x) = 0

that define a smooth surface

S = {x ∈ Rn : g1(x) = 0, g2(x) = 0, . . . , gr (x) = 0},

then there must exist constants λ1, λ2, . . . , λr such that

∇f (a) = λ1∇g1(a) + λ2∇g2(a) + · · ·+ λr∇gr (a).

As for the single constraint case, if S is compact the existence of a maximum and
minimum is guaranteed. In other cases, there may be no maximum or minimum
points.

3The gradient vectors, ∇g1,∇g2, . . . ,∇gr must be linearly independent.
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Lagrange multipliers

Example: Find the extreme values of f (x , y , z) = x + y + z subject to the two
constraints

g1(x , y , z) = x2 + y2 = 2 and g2(x , y , z) = x + z = 1.

To find candidate points for extrema, we solve

∇f (x , y , z) = λ1∇g1(x , y , z) + λ2∇g2(x , y , z)

in conjuction with the constraints. That is,

1 = 2λ1x + λ2 (1)

1 = 2λ1y (2)

1 = λ2 (3)

x2 + y2 = 2 (4)

x + z = 1 (5)


⇒


λ2 = 1, λ1 6= 0

⇒ (x , y , z) = (0,±
√
2, 1)

⇒ f (0,±
√
2, 1) = 1±

√
2.

Since the constraint surface is compact and f is continuous, minimum and
maximum values exist and hence are 1−

√
2 and 1 +

√
2.
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Lagrange multipliers

Example: Find the points on the surface

S = {(x , y , z) : z2 = x2y − y2 + 4}

that are closest to the origin. That is, we want to minimize
√

x2 + y2 + z2

subject to
g(x , y , z) = z2 − x2y + y2 = 4

It is simpler to minimise the square of the distance to the origin, so we look for
extreme values of

f (x , y , z) = x2 + y2 + z2.

Solving
∇f (x , y , z) = λ∇g(x , y , z), g(x , y , z) = 4

gives the following set of candidate points:

{(x , y , z) : x = 0 and y2 + z2 = 4} ∪ {(±1.1433 . . . , 1.4505 . . . , 0)}.

Now, f (±1.1433 . . . , 1.4505 . . . , 0) = 1.8469 . . . < 2.
Hence the points on S closest to the origin are (±1.1433 . . . , 1.4505 . . . , 0).
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Lagrange multipliers
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Inverse function theorem for f : R→ R

a b

f invertible on (a, b)

a bc

f ′(c) = 0, f invertible on (a, b)

a bc

f ′(c) = 0, f not invertible on (a, b)

a b

f not invertible on (a, b)
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Inverse function theorem for f : R→ R

From first year. . .

Theorem (Inverse function theorem)
If f : R→ R is differentiable on an interval I ⊂ R and f ′(x) 6= 0 for all x ∈ I ,
then f is invertible on I and the inverse f −1 is differentiable with

(f −1)′(x) =
1

f ′(f −1(x))
.

That is, if y = f (x) then f −1 exists and is differentiable with x = f −1(y) and

dx
dy

=
1
dy
dx

.
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Inverse function theorem

Consider an affine function T : R→ R given by

T (x) = mx + b.

T is differentiable on R with T ′(x) = m. When m 6= 0, T is invertible and

T (x) = mx + b ⇒ x = m−1T (x)−m−1b

so
T−1(x) = m−1x −m−1b.

T−1 is differentiable and
(T−1)′(x) = m−1.

If T is a good affine approximation to f near c then it seems plausible that on a
small enough interval around c , the existence of T−1 guarantees the existence of
f −1 with good affine approximation T−1.

We would expect (f −1)′(f (x)) = (f ′(x))−1.
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Inverse function theorem

Consider an affine function T : Rn → Rn given by

T(x) = Lx + b

T is differentiable on Rn with DT = L. When detL 6= 0, T is invertible and

T(x) = Lx + b ⇒ x = L−1T(x)− L−1b

so
T−1(x) = L−1x− L−1b.

If T is a good affine approximation to f near c then it seems plausible that on a
small enough ball around c, the existence of T−1 guarantees the existence of f−1

with good affine approximation T−1.

We would expect Dcf = L then Df(c)

(
f−1
)

= L−1.
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Inverse function theorem

Theorem
Let Ω ⊂ Rn be open, f : Ω→ Rn be C 1 and suppose a ∈ Ω.

If Df(a) is invertible (as a matrix) then f is invertible on an open set U containing
a. That is,

f−1 : f(U)→ U

exists.

Furthermore, f−1 is C 1 and for x ∈ U,

Df(x)f−1 =
(
Dxf
)−1

.

Note that this says f−1 has a good affine approximation at f(a) given by

f−1(x) ' a +
(
Daf
)−1(

x− f(a)
)
.
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Inverse function theorem

Example: Can the map x = r cos θ, y = r sin θ be inverted?

Define f : R2 → R2 by(
x
y

)
= f

(
r
θ

)
=

(
r cos θ
r sin θ

)
Away from (x , y) = (0, 0) (ie r = 0) f is
differentiable with Df = Jf so

Df =

∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

 =

(
cos θ −r sin θ
sin θ r cos θ

)

and det(Df) = r cos2 θ + r sin2 θ = r 6= 0.

So f is locally invertible away from r = 0.

Eg, at a =
(√

2,
π

4

)
, f(a) = (1, 1).

So

Df
(√

2,
π

4

)
=


1√
2
−1

1√
2

1



D
(
f−1
)

(1, 1) =
(
Df
(√

2,
π

4

))−1

=

 1√
2

1√
2

−1
2

1
2

 .

JM Kress (UNSW Maths & Stats) MATH2111 Differentiable Semester 1, 2014 111 / 127

Inverse function theorem

We can check that this matches what we get from directly inverting f. In the first
quadrant away from 0,

r =
√

x2 + y2, θ = tan−1(y/x) ⇒ f−1
(
x
y

)
=

( √
x2 + y2

tan−1(y/x)

)

⇒ Df−1 =


x√

x2 + y2

y√
x2 + y2

−y
x2 + y2

x
x2 + y2

 ⇒ Df−1
(
1
1

)
=

 1√
2

1√
2

−1
2

1
2

 .

An affine approximation to f−1 near
(
1
1

)
is

f−1
(
x
y

)
' f−1

(
1
1

)
+ D(f−1)

(
1
1

)(
x − 1
y − 1

)

=

(√
2
π

4

)
+

 1√
2

1√
2

−1
2

1
2

(x − 1
y − 1

)
.
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Inverse function theorem

Suppose f : R2 → R2 is defined by

f
(
x
y

)
=

(
x3ey + y − 2x

2xy + 2x

)
.

Note f
(
1
0

)
=

(
−1
2

)
.

Show that f has a differentiable inverse near (1, 0) and hence find an approximate

solution to f−1
(
−1.2
2.1

)
, that is, an approximate solution to

x3ey + y − 2x = −1.2,
2xy + 2x = 2.1.

The partial derivatives of the components of f exist and are continuous
everywhere. Hence f is differentiable on R2 and

Df = Jf =

(
3x2ey − 2 x3ey + 1
2y + 2 2x

)
⇒ Df(1, 0) =

(
1 2
2 2

)
.
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Inverse function theorem

Since det
(
Df
(
1
0

))
= −2 6= 0, the Inverse Function Theorem says that f has a

C 1 local inverse near (1, 0) with derivative

Df−1
(
−1
2

)
=
(
Df
(
1
0

))−1
= −1

2

(
2 −2
−2 1

)
=

(
−1 1
1 − 1

2

)
.

Now, the best affine approximation to f−1 is

f−1
(
u
v

)
' f−1

(
−1
2

)
+Df−1

(
−1
2

)(
u − (−1)
v − 2

)
=

(
1
0

)
+

(
−1 1
1 − 1

2

)(
u + 1
v − 2

)
So now the approximate solution is(
x
y

)
= f−1

(
−1.2
2.1

)
'
(
1
0

)
+

(
−1 1
1 − 1

2

)(
−0.2
0.1

)
=

(
1
0

)
−1
2

(
−0.6
0.5

)
=

(
1.3
−0.25

)

[
f
(

1.3
−0.25

)
'
(
−1.14
1.95

)
, f−1

(
−1.02
2.01

)
'
(

1.03
−0.025

)
, f
(

1.03
−0.025

)
'
(
−1.019
2.009

)
.

]
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Implicit function theorem

Consider a C 1 function g : R2 → R, its 0 contour,

S = {(x , y) ∈ R2 : g(x , y) = 0}

and a point (x0, y0) ∈ S . When does S define y as a function of x near the point
(x0, y0)?

At A and B but not C.

x

y

A

B

C
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Implicit function theorem

x0 + δx0 − δ

y0 + δ

y0 − δ

x0

y0

x

y

g(x , y) = 0

Given
g : R2 → R is C 1,
g(x0, y0) = 0 and
∂g
∂y

(x0, y0) 6= 0,

we want to show that there
is a δ such that for

x ∈ (x0 − δ, x0 + δ)

there is a unique

y ∈ (y0 − δ, y0 + δ)

satisfying

g(x , y) = 0.
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Implicit function theorem

x0 x0 + ax0 − a

y0

y0 + a

y0 − a

g(x , y) = 0

Assume that
∂g
∂y

(x0, y0) > 0.

As g is C 1, there are a > 0 and
b > 0 such that for

x ∈ (x0 − a, x0 + a)

y ∈ (y0 − a, y0 + a),

∂g
∂y

(x , y) > b∣∣∣∣∂g∂x (x , y)

∣∣∣∣ < M

for some M > 0.
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Implicit function theorem

x0 + δx0 − δ

y0 + δ

y0 − δ

x0 x0 + ax0 − a

(x , y0 + a0)

(x , y0 − a0)

y0

y0 + a

y0 − a

x

y

g(x , y) = 0

Choose positive a0 and δ so that

a0 < a, δ < min
(
a0,

ba0

M

)
.

g(x , y0 + a0) > 0−Mδ + ba0

> −ba0 + ba0 = 0.
g(x , y0 − a0) < 0 + Mδ − ba0

< ba0 − ba0 = 0.

IVT ⇒ ∃y ∈ (y0 − a0, y0 + a0)
such that g(x , y) = 0.

∂g
∂y

> 0 ⇒ y is unique.

MVT ⇒ g(x , y0 ± a0) = g(x0, y0) +
∂g
∂x

(c±, y0)(x − x0) +
∂g
∂y

(x , d±)(a0 − y0).
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Implicit function theorem

We have shown that given
g : R2 → R is C 1,
g(x0, y0) = 0 and
∂g
∂y

(x0, y0) 6= 0,

there is a δ such that for

x ∈ (x0 − δ, x0 + δ)

there is a unique

y ∈ (y0 − δ, y0 + δ)

satisfying

g(x , y) = 0.

So, there is f : (x0− δ, x0 + δ)→ R such that

g(x , f (x)) = 0.

It can also be shown that f is C 1. Assuming
f is differentiable, we can find f ′ by implicit
differentiation and find

d
dx

(
g(x , f (x))

)
= 0

⇒ ∂g
∂x

dx
dx

+
∂g
∂y

dy
dx

= 0

⇒ ∂g
∂x

+
∂g
∂y

f ′(x) = 0

⇒ f ′(x0) = −
(
∂g
∂y

(x0, y0)

)−1
∂g
∂x

(x0, y0).
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Implicit Function Theorem

For the Implicit Function Theorem in higher dimensions, consider the following.

Near which points does
x2 + y2 + z2 = 1

define z as a function of x and y? That is, when does there exist f such that
z = f (x , y)?
Given

x + y + z = 6
2x − y + 2z = 8,

you can find y and z given just the value of x . So there is a function

f : R→ R2 such that
(
y
z

)
= f(x).

Typically, if there are n equations and r variables, we expect to be able to solve
for n of variables in terms of the remaining n − r variables near most points.
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Implicit Function Theorem

Let x ∈ Rm denote our known variables and let u ∈ Rn denote our unknown
variables. To solve for u in terms of x we expect to need n equations:

g1(x1, . . . , xm, u1, . . . , un) = 0
g2(x1, . . . , xm, u1, . . . , un) = 0

...
...

gn(x1, . . . , xm, u1, . . . , un) = 0.

We can write this more succinctly as

g(x,u) = 0

where g : Rm+n → Rn is

g(x,u) = (g1(x,u), . . . , gn(x,u)).

Solving this system of equations means finding a way of specifying what u is if we
know x. That is, we need to find a continuous function f : Rm → Rn satisfying

g(x, f(x)) = 0.

JM Kress (UNSW Maths & Stats) MATH2111 Differentiable Semester 1, 2014 121 / 127

Implicit Function Theorem

Define the n ×m matrix A and n × n matrix B in terms of Dg.

Dg =


∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xm
| ∂g1

∂u1
· · · ∂g1

∂un
...

...
. . .

... |
...

. . .
...

∂gn

∂x1

∂gn

∂x2
· · · ∂gn

∂xm
| ∂gn

∂u1
· · · ∂gn

∂un

 = [A|B]

Theorem (Implicit Function Theorem)
Suppose that (x0,u0) is on the surface g(x,u) = 0. If B(x0,u0) is an invertible
matrix, then there is an open set V around x0 on which u is defined implicitly as a
function of x. That is, there exists a continuously differentiable function
f : Rm → Rn such that for all x ∈ V

g(x, f(x)) = 0.
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Implicit Function Theorem

To find Df in terms of Dg use the chain rule. Let h : Rm → Rm+n be defined by

h(x) =

(
x

f(x)

)
=



x1
...
xm

f1(x1, . . . , xm)
...

fn(x1, . . . , xm)


⇒ Dxh =

(
Im
Dxf

)

where Im is the n × n identity matrix. Differentiating the equation

g(x, f(x)) = (g ◦ h)(x) = 0

gives

0 = Dh(x)gDxh =
(A(h(x)) | B(h(x)))

(
Im
Dxf

)
= A(h(x)) + B(h(x))Dxf.

Rearranging this gives Dxf = −B(h(x))−1A(h(x)).
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Implicit Function Theorem

Show that there are open sets U ⊂ R2 containing
(
1
2

)
and V ⊂ R2 containing(

1
5

)
so that the equations

x2 + xy + yu + u2 − xv − 1 = 0,
y2 + xy − u2 − v = 0,

define a differentiable function f : U → V for which (x , y , u, v) satisfies the

equations when
(
u
v

)
= f
(
x
y

)
.

Find the affine approximation to f near
(
1
2

)
and hence find an approximate

solution
(
u
v

)
to these equations when

(
x
y

)
=

(
1.2
1.9

)
.
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Implicit Function Theorem

The equations can be written in the form g
((

x
y

)
,

(
u
v

))
=

(
0
0

)
. Then

Dg =

(
2x + y − v x + u y + 2u −x

y x + 2y −2u −1

)
.

At the known point x0 =

(
1
2

)
, u0 =

(
1
5

)
, this gives

Dg(x0,u0) =

(
−1 2 | 4 −1
2 5 | −2 −1

)
= [A |B].

B is invertible and so there is a C 1 function f
(
x
y

)
defined on an open set around

x0 so that g
((

x
y

)
, f
(
x
y

))
= 0, and

Df(x0) = −B−1A = − 1
−6

(
−1 1
2 4

)(
−1 2
2 5

)
=

1
6

(
3 3
6 24

)
.
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Implicit Function Theorem

Thus the affine approximation to f
(
x
y

)
near

(
1
2

)
is

f(x) ≈ f(x0) + Df(x0)(x− x0) =

(
1
5

)
+

1
6

(
3 3
6 24

)(
x − 1
y − 2

)
.

In particular

f
(
1.2
1.9

)
≈
(
1
5

)
+

1
6

(
3 3
6 24

)(
0.2
−0.1

)
=

(
1.05
4.8

)
.

You can check whether this is any good by calculating g
((

1.2
1.9

)
,

(
1.05
4.8

))
.

JM Kress (UNSW Maths & Stats) MATH2111 Differentiable Semester 1, 2014 126 / 127



Implicit Function Theorem

What we have done is to replace the original equations

g(x , y , u, v) = 0

with the equations

T(x , y , u, v) = g(1, 2, 1, 5) +

(
−1 2 4 −1
2 5 −2 −1

)
x − 1
y − 2
u − 1
v − 5

 =

(
0
0

)

where T is the best affine approximation to g near (1, 2, 1, 5). That is, since
g(1, 2, 1, 5) = 0, the given equations are approximately

−(x − 1) + 2(y − 2) + 4(u − 1)− (v − 5) = 0
2(x − 1) + 5(y − 2)− 2(u − 1)− (v − 5) = 0

which simpifies to the pair of linear equations

−x + 2y + 4u − v = −2
2x + 5y − 2u − v = −5.

JM Kress (UNSW Maths & Stats) MATH2111 Differentiable Semester 1, 2014 127 / 127


