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MATH2111 Higher Several Variable Calculus Tutorial Problems

1 Curves and Surfaces

[M] – Maple/Gnuplot; [A] – additional/optional problems; [H] – harder problems.

1.1 Curves in Rn

1: Sketch the curves (x, y) = (t, t) and (x, y) =
(t2, t + 2) for t ∈ R, and find the two points where
they intersect.

2: Sketch the projections of the following curves onto
the plane z = 0 and onto the plane y = 0.

i) (x, y, z) = (cos 2t, sin 2t, sin t), t ∈ R.

ii) (x, y, z) = (cos t, sin t, sin 3t), t ∈ R. (Rotate
the image until it looks like the ABC logo).

[M] 3: Sketch the curves in Q2 by the command
spacecurve in Maple; plot3 in Matlab; or splot

in Gnuplot. Rotate the image to see what the curve
looks like from different viewpoints.

4: Find the unit tangent vector to the parametrised
curve r(t) at t = a and write down a parametric
equation for the tangent line to the curve at a.

i) r(t) = 3 cos t i + 3 sin t j + 4tk, a = π/4

ii) r(t) = t i + t2 j + t3 k, a = 1.

5: Consider the two curves given in parametric form
by r(t) = (t2 − t, t2 + t) and r(t) = (t+ t2, t− t2) for
t ∈ R.

i) Find the two points of intersection of the
curves.

ii) Find the angle between the two curves at each
point of intersection.

iii) Find all points on the curves where the tan-
gent is parallel to i.

iv) Find all points on the curves where the tan-
gent is parallel to j.

v) For −2 ≤ t ≤ 2, sketch both curves on the
same diagram. Show clearly all the points and
angles you have found.

6: Sketch the curve given parametrically by (x, y) =
(t3, t5), t ∈ R. Show that this parametrisation does
not give a tangent vector for the curve at (0, 0). Find
a parametrisation of this curve which does give a tan-
gent vector for the curve at (0, 0).

[A] 7: Suppose that f : R → R3, g : R → R3 and
λ : R→ R. Prove that

i)
d

dt
(λf) = λ

df

dt
+
dλ

dt
f .

ii)
d

dt
(f · g) =

df

dt
· g + f · dg

dt
.

iii)
d

dt
(f × g) =

df

dt
× g + f × dg

dt
.

8: Suppose u, v, w are three differentiable functions
from R to R3 such that for every t ∈ R the vectors
u(t), v(t), w(t) form an orthonormal basis in R3.

i) Prove that u′(t) ⊥ u(t) and u′(t) · v(t) =
−u(t) · v′(t) for all t.

ii) Suppose that r(t) = x(t)u(t) + y(t)v(t) +
z(t)w(t) for some three functions x, y, z from
R → R. Show that x(t) = r(t) · u(t) and
y(t) = r(t) · v(t) and z(t) = r(t) ·w(t) for all t.

9: A particle moves in a plane such that its position
at time t is given by r(t) = (3t2, t3 − 9t).

i) Find all positions at which the velocity of the
particle is perpendicular to its acceleration.

ii) Show that there are no positions where the
velocity of the particle is parallel to its acceler-
ation.

10: i) Show that for a particle moving with ve-
locity v(t), if v(t) · v′(t) = 0 for all t then the
speed v is constant.

ii) A particle of mass m with position vector r(t)
at time t is acted on by a total force

F (t) = λr(t)× v(t),

where λ is a constant and v(t) is the velocity of
the particle. Show that the speed v of the par-
ticle is constant. (Note that Newton’s second
law of motion in its vector form is F = ma.)

11: At time t a particle is at position r(t).

i) Show that

r · dr
dt

=
d

dt

(
1

2
r2

)
,

where r is the distance of the particle from the
origin.

ii) Show
d(v2)

dt
= 2

d2r

dt2
· dr
dt
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1.2 Surfaces in R3

[M] 12: Use Maple/Gnuplot to plot the following func-
tions f : R2 → R.

i) f(x, y) = cos(x+ y).

ii) f(x, y) = sin(
√
x2 + y2).

iii) f(x, y) = x3 − x2y.

iv) f(x, y) = x4 − 2x2y.

13: i) Sketch level curves f = ±1 for the func-
tions (i) and (ii) of Q12.

ii) Sketch the section of the function (i) of Q12
by the planes x = ±π4 ;±π2 .

iii) Sketch the section of function (ii) of Q12 by
the plane y = x tan θ, θ ∈ (−π2 ,

π
2 ).

[M] 14: Sketch the graph of the function f : R2 → R
defined by f(x, y) = y3 − y − 2x2. Use the plot3d

command in Maple (or surf in Matlab; or splot of
Gnuplot) to sketch the graph for |x| ≤ 1.2, |y| ≤ 1.5.
Use the Maple command contourplot (or the Mat-
lab command contour; or splot with set contour

in Gnuplot, see help contour in Gnuplot) to look at
some of the contours of f .

[M] 15: Apply the Maple command contourplot (or
the Matlab command contour; or splot with set

contour in Gnuplot, see help contour in Gnuplot)
to the function f(x, y) = x/(1 + x2 + y2) for |x| ≤ 3,
|y| ≤ 2 and then use these contours to sketch the sur-
face. (Note that the contours in the Maple sketch are
not labelled with the corresponding values of f , but
by default their colour shades from yellow to red as
the value of f increases.) Use plot3d (or splot of
Gnuplot) to check your sketch.

[M] 16: On separate diagrams, sketch the surfaces in R3

defined by the following equations:

i) z = x2 + y2;

ii) 2z2 = x2 + y2;

iii) x2 + y2 + z2 = 9;

iv) x2 + y2 = 4;

v) x2 + y2 − z2 = 1;

vi) x2 − y2 − z2 = 1.

17: For each function of Q16, sketch the sections of
the graph of the function by the planes x = α, y = α
and z = α, where α = −1, 0, 1.

18: Consider the region above the cone z2 = x2 +y2,
z ≥ 0, and inside the sphere x2 + y2 + z2 = 2az, with
a > 0.

i) Sketch the section of this region by the
plane x = 0.

ii) Describe the curve of intersection of these sur-
faces.

iii) What is the projection of the region on the x, y
plane?

19: i) Parametrise the curve of intersection of two
cylinders x2 + y2 = 1 and x2 + z2 = 1.

ii) What is the curve of intersection.

iii) Find the projection of the curve of intersection
onto the plane z = 0.

20: Let

S = { (x, y, z) ∈ R3 : x2 + y2 + (z − 1)2 = 1 }

and

T = { (x, y, z) ∈ R3 : (z + 1)2/4 = x2 + y2, z ≥ −1 }.

i) Find the z-coordinates of the points of inter-
section of S and T and sketch the projection
into the xy-plane of the curves of intersection.

ii) Sketch the section of S and T by the
plane x = 0 on the same diagram.

iii) For what values of a do the surfaces x2+y2+
(z − 1)2 = 1 and a(z + 1)2 = x2 + y2 (z ≥ −1)
not intersect?

21: Find the projection into the xy-plane of the curve
of intersection of the surfaces 2z = x2 − y2 + 2x and
3z = 4x2 + y2 − 2x and express its equation in polar
co-ordinates.

[M] 22: Sketch the surfaces given parametrically as fol-
lows and use plot3d in Maple; or splot with set

parametric in Gnuplot, to check your answers.

i) (x, y, z) = (cosu sin v, sinu sin v, cos v), 0 ≤
u ≤ 2π, 0 ≤ v ≤ π/2.

ii) (x, y, z) = (cosu cosh v, sinu cosh v, sinh v),
0 ≤ u ≤ 2π, v ∈ R.

3
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iii)*
x =

(
2 + v sin(u/2)

)
cosu

y =
(
2 + v sin(u/2)

)
sinu

z = v cos(u/2)


for 0 ≤ u ≤ 2π, −1 ≤ v ≤ 1.

[Hints: Let (r, θ) be polar coordinates in the

xy-plane, so that points in R3 are described
by cylindrical coordinates (r, θ, z). Show that
the intersection of the surface with the half-
plane θ = u0 is the curve (r, θ, z) =

(
2 +

v sin(u0/2), u0, v cos(u0/2)
)
, −1 ≤ v ≤ 1. Ver-

ify that this is a line segment and work out how
its position changes as u0 varies from 0 to 2π.]

Answers to problems

A1: (1, 1) and (4, 4).
A3: webnotes1 A4: i) 1/5

(
−3/
√

2, 3/
√

2, 4
)
,(

3/
√

2, 3/
√

2, π
)

+ λ
(
−3/
√

2, 3/
√

2, 4
)
. ii)

(1, 2, 3)/
√

14, (1, 1, 1) + λ(1, 2, 3). A5: i) ii) (0, 0),
π/2; (2, 0), cos−1(.8). iii) (3/4,−1/4), (3/4, 1/4)
iv) (−1/4, 3/4), (−1/4,−3/4). A7: webnotes2

A9: i) (3,−8), (0, 0), (3, 8) A10: i) Use v(t)2 =

‖v(t)‖2 = v(t) · v(t). ii) F (t) · v(t) = mv′(t) · v(t) =
(λr(t)×v(t)) ·v(t) = 0. A17: i) paraboloid ii) cone
iii) sphere iv) cylinder iv) hyperboloid v) hyperboloid
of 2 sheets. A18: (ii) circle z = a, x2 +y2 = a2, (iii)
disc x2+y2 ≤ a2 A19: r(t) = (cos t, sin t,± sin t); el-
lipse; circle r(t) = (cos t, sin t, 0). A20: iii) a > 1/3
A21: r = 2 cos θ, 0 ≤ θ < 2π

1.3 Metrics

23: i) Two metrics ρ and δ are said to be topo-
logically equivalent if and only if every ρ-ball
contains a δ-ball and every δ-ball contains a ρ-
ball.

ii) Two metrics ρ and δ are said to be equivalent if
and only if there are constants

c1, c2 > 0

such that

c1 ρ(x,y) ≤ δ(x,y) ≤ c2ρ(x,y).

Show that equivalent metrics (as defined in the
notes) are topologically equivalent. [Note that the
converse is not true.]

[H] 24: Consider the two metrics d(x,y) = ||x− y|| and
δ(x,y) = d(x,y)/(1+d(x,y)) (you may assume they
are metrics).

i) Show that d and δ are not equivalent.

ii) Show that for any r > 0 there is R > 0 such
that

Bd(x, r) ⊆ Bδ(x, R).

iii) Show that for any 0 < R < 1 there is r > 0
such that

Bδ(x, R) ⊆ Bd(x, r).

iv) Are the metrics δ and d topologically equiv-
alent (topological equivalence is defined in the
previous question).

[H] 25: i) Let d be the usual distance function on Rn
(i.e. d2) and let d∞ be defined by d∞(x,y) =
max{ |x1−y1|, . . . , |xn−yn| }. Show that d and
d∞ are equivalent metrics on Rn by showing
that

d∞(x,y) ≤ d(x,y) ≤
√
nd∞(x,y)

for all x, y ∈ Rn.

ii) Suppose that f : Rm → Rn has component
functions fi : Rm → R for i = 1, . . . , n and that
fi(x) → bi as x → a for i = 1, . . . , n. Prove,
from the definition of limits, that f(x) → b as
x→ a. [Hint: Use d∞ instead of d.]

iii) Show that if dp is defined for positive integers
p by

dp(x,y) =
(
|x1 − y1|p + . . .+ |xn − yn|p

)1/p
then dp(x,y) → d∞(x,y) as p → ∞. [This
is a slight generalisation of a problem in the
MATH1231/1241 problem booklet which asks
you to find the limit as n→∞ of (an + bn)1/n

when a ≥ b > 0.]

i) webnotes3 ii) webnotes4

1http://web.maths.unsw.edu.au/~potapov/2111_2015/Week-1-Lecture-1.html#g_t_0060_0060ABC_0027_

0027-curve-in-gnuplot-_0028video_0029
2http://web.maths.unsw.edu.au/~potapov/2111_2015/Algebraic-properties-of-derivative-of-curve.html
3http://web.maths.unsw.edu.au/~potapov/2111_2015/Metrics-and-equivalence-theorem.html
4http://web.maths.unsw.edu.au/~potapov/2111_2015/Further-properties-of-limits-of-vector-map.html4

http://web.maths.unsw.edu.au/~potapov/2111_2015/Week-1-Lecture-1.html#g_t_0060_0060ABC_0027_0027-curve-in-gnuplot-_0028video_0029
http://web.maths.unsw.edu.au/~potapov/2111_2015/Algebraic-properties-of-derivative-of-curve.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Metrics-and-equivalence-theorem.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Further-properties-of-limits-of-vector-map.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Week-1-Lecture-1.html#g_t_0060_0060ABC_0027_0027-curve-in-gnuplot-_0028video_0029
http://web.maths.unsw.edu.au/~potapov/2111_2015/Week-1-Lecture-1.html#g_t_0060_0060ABC_0027_0027-curve-in-gnuplot-_0028video_0029
http://web.maths.unsw.edu.au/~potapov/2111_2015/Algebraic-properties-of-derivative-of-curve.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Metrics-and-equivalence-theorem.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Further-properties-of-limits-of-vector-map.html
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2 Open and Closed subsets; Limits

[M] – Maple/Gnuplot; [A] – additional/optional problems; [H] – harder problems.

2.1 Open and Closed subsets of Rn

In this subsection, you are only allowed to use definitions of open and closed sets and definition of the boundary of
a set.

26: Show that

1) [a, b] is closed, a, b ∈ R;

2) (a, b) is open, a, b ∈ R;

3) ∅ is open and close;

4) R is open and close;

5) [a, b) is neither closed nor open, a, b ∈ R;

6) Q is neither closed nor open;

7)
{
k−1 : k ∈ Z, k 6= 0

}
is neither open nor

closed;

8) The open ball B(x, ε) is open.

27: Determine whether or not the set{
(m−1, n−1) : m,n ∈ Z, m, n > 0

}

is closed.

28: Let

Ω =
{

(x, y) ∈ R2 : x+ y 6= 0
}
.

Show that Ω is an open subset of R2.

[A] 29: i) If Ω1 and Ω2 are open sets in Rn, show
that Ω1 ∩ Ω2 and Ω1 ∪ Ω2 are open.

ii) If Ω1 and Ω2 are closed sets in Rn, show that
Ω1 ∩ Ω2 and Ω1 ∪ Ω2 are closed.

30: Show that every point (0, a) with |a| ≤ 1 is the
boundary point of the set

S =
{

(x, y) ∈ R2 : x > 0, y = sin(1/x)
}
.

2.2 Limits

31: Use definition of the limit to show that

i) lim
x→2

x+ 1

x+ 2
=

3

4
.

ii) lim
(x,y)→(0,0)

x4 + x2 + y2 + y4

x2 + y2
= 1.

32: Show that the following limits do not exist

i) lim
(x,y)→(0,0)

xy

x2 + y2
;

ii) lim
(x,y)→(0,0)

x2y

x4 + y2
.

33: For the limits below give two proofs: one using
pinching principle and one using the definition of the
limit directly

i) lim
(x,y)→(0,0)

x3

x2 + y2
;

ii) lim
(x,y)→(0,0)

x2 + y2 + x2y2

x2 + y2
= 1.

34: Let

f(x, y) =
x− y
x+ y

.

Show that

lim
x→0

[
lim
y→0

f(x, y)

]
= 1 and lim

y→0

[
lim
x→0

f(x, y)
]

= −1.

Show also that

lim
(x,y)→(0,0)

f(x, y)

does not exist.

35: Let

f(x, y) =
x2y2

x2y2 + (x− y)2
.

Show that

lim
x→0

[
lim
y→0

f(x, y)

]
= lim
y→0

[
lim
x→0

f(x, y)
]

= 0.

5
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Show also that

lim
(x,y)→(0,0)

f(x, y)

does not exist.

36: Let

f(x, y) = (x+ y) sin
1

x
sin

1

y
, x 6= 0, y 6= 0

and
f(x, y) = 0, x = 0 or y = 0.

Show that neither

lim
y→0

f(x, y), x 6= 0 nor lim
x→0

f(x, y), y 6= 0

exist. Also, use pinching principle to show that

lim
(x,y)→(0,0)

f(x, y) = 0.

37: Use pinching principle to show that

lim
(x,y)→(0,0)

xy(x+ y)

x2 − xy + y2
= 0.

Hint: Prove first that∣∣∣∣ xy

x2 − yx+ y2

∣∣∣∣ ≤ 1, ∀(x, y) 6= 0.

38: Use pinching principle to show that

lim
(x,y)→(0,0)

xy(x+ y)

x2 + y2
= 0.

Hint: Prove first that

|xy|
x2 + y2

≤ 1

2
.

2.3 Limits and Taylor expansions

In the following questions you are allowed to use the known Taylor expansions below. In the expansions below the
function ε(x) different from one expansion to another and is such that

ε(x) : lim
x→0

ε(x) = 0

Taylor expansions

ex = 1 + x+
x2

2
+ . . .+

xn

n!
+ xnε(x) =

n∑
k=0

xk

k!
+ xnε(x)

sinx = x− x3

3!
+ . . .+ (−1)k

x2n+1

(2n+ 1)!
+ x2n+1ε(x) =

n∑
k=0

(−1)k
x2k+1

(2k + 1)!
+ x2n+1ε(x)

sinhx = x+
x3

3!
+ . . .+

x2n+1

(2n+ 1)!
+ x2n+1ε(x) =

n∑
k=0

x2k+1

(2k + 1)!
+ x2n+1ε(x)

cosx = 1− x2

2
+ . . .+ (−1)n

x2n

(2n)!
+ x2nε(x) =

n∑
k=0

(−1)k
x2k

(2k)!
+ x2nε(x)

coshx = 1 +
x2

2
+ . . .+

x2n

(2n)!
+ x2nε(x) =

n∑
k=0

x2k

(2k)!
+ x2nε(x)

ln(1 + x) = x− x2

2
− . . .+ (−1)n−1x

n

n
+ xnε(x) =

n∑
k=1

(−1)k+1x
k

k
+ xnε(x)

6
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(1 + x)α = 1 + αx+ . . .+
(α
n

)
xn + xnε(x) =

n∑
k=0

(α
k

)
xk + xnε(x)

(α
k

)
=

k∏
s=1

α− s+ 1

s
=
α× (α− 1)× . . .× (α− k + 1)

k!

39: Prove that

lim
(x,y)→(0,a)

sin(xy)

x
= a.

40: Find

lim
(x,y)→(a,0)

1− cos(xy)

y2
.

41: Find

lim
(x,y)→(a,0)

ln(1 + xy)

y
.

42: Find

lim
(x,y)→(0,a)

(x+ y)2/3 − y2/3

x
.

Answers to problems

A26: Direct argument for part (8) is given in
these webnotes5. A34: See these webnotes6 for an
idea how to show that a limit does not exist A35:
See answer to Problem 34 A36: See these webnotes7

with an example of argument showing that limit ex-
ists A37: See the answer to Problem 36 A38: See
the answer to Problem 36 A38: See the answer to
Problem 36

2.4 Limits and metrics

43: For k ≥ 1 let

xk =

(
3k − 1

k + 3
,

2k + 2

k + 3

)
,

and let
x = (3, 2).

i) Calculate d2(xk,x) and d∞(xk,x).

ii) Fix ε > 0. Find a K such that for all k ≥ K,
d2(xk,x) < ε. Do the same for d∞ in place of
d2.

iii) Does xk → x as k →∞?

2.5 Limits and continuity

[H] 44: Show (by ε, δ argument) that the following func-
tion is continuous at (0, 0):

f(x, y) =


x4 + y4

x2 + y2
(x, y) 6= (0, 0),

0 (x, y) = (0, 0).

Hint: These webnotes8 have a similar argument.

45: If

f(x, y) =
sin(x2 + y2)

x2 + y2
, (x, y) 6= (0, 0),

how must f(0, 0) be defined so as to make f contin-

uous at the origin? Hint:∣∣∣∣ sin aa − 1

∣∣∣∣ ≤ |a|2 , a ∈ R.

You do not need to prove this inequality.

46: Let

f(x, y) =
xy

x2 + y2
, (x, y) 6= (0, 0).

By considering appropriate curves which approach
(0, 0) (or otherwise), show that there is no value of
f(0, 0) which makes the function f continuous at the
origin.

5http://web.maths.unsw.edu.au/~potapov/2111_2015/A-ball-is-open-subset.html
6http://web.maths.unsw.edu.au/~potapov/2111_2015/Limit-by-sequences-_002d_002d-Example.html
7http://web.maths.unsw.edu.au/~potapov/2111_2015/Example-of-limit-of-vector-map.html
8http://web.maths.unsw.edu.au/~potapov/2111_2015/Example-of-limit-of-vector-map.html
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See these webnotes9

47: For each of the following functions f : R → R,
find an open set U in R such that f−1(U) is not open.

i) f(x) = 1 for x ≥ 0 and 0 otherwise.

ii) f(x) = 1/x for x > 0 and 0 otherwise.

[H] 48: Suppose f : Rn → R is such that the sets{
x ∈ Rn : f(x) > d

}
and {

x ∈ Rn : f(x) < d
}

are open for every d ∈ R. Prove that f is continuous.

3 Continuous maps and classes of subsets

[M] – Maple/Gnuplot; [A] – additional/optional problems; [H] – harder problems.

3.1 Open and closed subsets

You are allowed to use Problem 50 to prove your answer to other problems in this subsection. Also, you are allowed
to use the fact that an interval (and a disjoint union of intervals) in R1 is open (closed, respectively) if and only if
it does not contain its end points (contains all of its end points, respectively).

49: Prove that, for any subsets U, V ∈ Rm and every
map

f : Rn 7→ Rm,

i) f−1(U c) =
(
f−1(U)

)c
;

ii) f−1(U) ∪ f−1(V ) = f−1(U ∪ V );

iii) f−1(U) ∩ f−1(V ) = f−1(U ∩ V ).

[A] 50: Let f be a function from Rm to Rn.

i) Prove that f is continuous on Rm if and only
if f−1(U) is open in Rm for all open sets U in
Rn.

ii) Use the part i) of Question 49 and deduce
that f is continuous on Rm if and only if f−1(U)
is closed in Rm for all closed sets U in Rn.

51: Decide whether each of the following subsets is
open or closed. Prove your answer.

i) {
(x, y) ∈ R2 : x2 − y2 < 1

}
.

ii) {
(x, y) ∈ R2 : 0 < x2 + y2 < 1

}
.

iii) {
(x, y) ∈ R2 : x2 − y2 ≥ 1

}
.

iv) {
(x, y, z) ∈ R3 :

√
x2 + y2 ≤ z ≤ 1

}
.

52: For each set Ω below show that Ω is neither open
nor closed. Do so, by finding f−1(Ω) for the func-
tion f provided. Find suitable function f if no func-
tion is given.

i) f : R→ R2, f(x) = (x, 0),{
(x, y) ∈ R2 : 0 < x2 + y2 ≤ 1

}
.

ii) f : R→ R2, f(x) = (x, 1){
(x, y) ∈ R2 : 0 ≤ x2 − y2 < 1

}
.

iii) {
(x, y, z) ∈ R3 :

√
x2 + y2 ≤ z < 1

}
.

53: Determine the interior and boundary of the set{
(x, y) ∈ R2 : 0 < x2 + y2 < 1

}
.

[H] 54: Show that a subset S of Rn is closed if and only
if it contains all its boundary points.

55: For the following sets S determine:

i) the boundary of S

ii) the interior of S

iii) whether S is open, closed or neither.

9http://web.maths.unsw.edu.au/~potapov/2111_2015/Limit-by-sequences-_002d_002d-Example.html
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i) S =
{

(x, y) ∈ R2 : x2 − y2 < 1
}

.

ii) S =
{

(x, y) ∈ R2 : x2 − y2 ≥ 1
}

.

iii) S =
{

(x, y, z) ∈ R3 :
√
x2 + y2 ≤ z ≤ 1

}
.

iv)*

S =

{
(x, y) ∈ R2 :(

0 < |x| ≤ 1, y = sin
1

x

)
or(

x = 0, −1 ≤ y ≤ 1
)}

.

3.2 Bounded and path-connected subsets

56: Decide whether the subsets of Question 51 are
bounded or unbounded. Prove your answer.

57: Decide whether the following subsets are path-
connected or not path-connected. Prove your an-
swer. You allowed to use both the definition of path-
connected subsets, IVT, Problem 58 and polar coor-
dinates:

x = r cos t,
y = r sin t

i) {
(x, y) ∈ R2 : x ∈ [a, b], y ∈ [c, d]

}
.

ii) {
(x, y) ∈ R2 :

1

2
< x2 + y2 < 1

}
.

iii) {
(x, y) ∈ R2 :

1

2
< x2 + y2 < 1 and xy > 0

}
.

3.3 Continuous maps and subsets

[A] 58: Let f : Ω ⊂ Rn → Rm be continuous. Prove that

i) K ⊂ Ω and K is compact⇒ f(K) is compact.

ii) B ⊂ Ω and B is path connected ⇒ f(B) is
path connected.

59: Consider

S1 =
{

(x, y) ∈ R2 :
1

4
≤ x2 + y2 ≤ 1, x, y ≥ 0

}
S2 =

{
(x, y) ∈ R2 :

1

4
≤ x2 + y2 < 1, x, y ≥ 0

}
Q =

{
(x, y) ∈ R2 :

1

4
≤ x2 + y2, x, y ≥ 0

}
Is there a continuous function f : R2 → R2 such that

i) f(S1) = S2?

ii) f(S2) = S1?

iii) f(Q) = S2?

iv) f(Q) = S1?

v) f(S2) = Q?

vi) f(S1) = Q?

Hint : Consider using polar and inverse polar map to
reduce the problem to one-dimension and map the
radius component only.

[H] 60: In the context of Problem 59, consider the sub-
sets

S1 =
{

(x, y) ∈ R2 : x2 + y2 ≤ 1
}

S2 =
{

(x, y) ∈ R2 : x2 + y2 < 1
}
Q = R2

Is it possible to use the polar and inverse polar maps
in this case?

[H] 61: Define f : R2 → R2 by

f(x, y) = (x2 − y2, x+ y + 1).

Find the images of the following sets under f .

i) {(x, y) : x ≥ 0, y ≥ 0}.

ii) {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

iii) {(x, y) : y ≥ −x}.

Hint: Map boundary first. In case of part (iii), find
the image of the straight lines x+ y = a with a > 0.

9
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Answers to problems

A50: Part i) proved in these webnotes10 A52:
Argument for (i) is explained in these webnotes11;
Also, if you are interested in the direct, based on
definition only, argument for (i), look at these web-

notes12;

A53: These webnotes13 have possible solution
A55: i) open. ii) closed. iii) closed. iv) closed.

3.4 Properties of continuous functions

[H] 62: (Algebra of continuous functions)

i) For two functions continuous on Ω

f : Ω ⊂ Rn → R and g : Ω ⊂ Rn → R,

prove that f + g, fg and f/g are continuous.
[The domain of f/g must exclude points where
g(x) = 0.]

ii) For two continuous functions

f : Rm → R and g : Ω ⊂ Rn → Rm

prove that f ◦ g is continuous where it makes
sense.

These webnotes14 present a similar argument for
limits

[H] 63: Suppose that f : Ω ⊂ Rn → Rm and x0 ∈ Ω.
Prove that the following are equivalent

i) f is continuous at x0 ∈ Ω.

ii) ∀ε > 0, ∃δ > 0 such that for x ∈ Ω,

d(x,x0) < δ ⇒ d(f(x), f(x0)) < ε,

i.e.

x ∈ B(x0, δ)⇒ f(x) ∈ B(f(x0), ε).

iii) ∀ sequences {xk} in Ω with limit x0, {f(xk)}
converges to f(x0).

iv) f(x0) is an interior point of f(Ω) ⇒ x0 is
an interior point of Ω.

ii) see definition of limit in these webnotes15 iii)
See connection between limit and sequences in these
webnotes16 iv) Use Question 50

See these webnotes17 for the proof

64: For each of the sets in question 55 determine
whether they are bounded, compact, and/or path
connected.

i) connected. ii) none. iii) bounded, compact,
path connected. iv) bounded, compact, not path con-
nected!

65: Let

X1 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
X2 = {(x, y) : x2 + y2 < 1}
X3 = {(x, y) : x2 < y2 < 1}
X4 = {(x, y) : x ≥ 0, y ≥ 0}

For each pair i 6= j, decide whether there is any con-
tinuous function fij which maps Xi onto Xj . (A
formula for fij is not required if you can describe
the action of the function.) These webnotes18 show a
similar example with detailed argument.

X1 can’t be mapped onto any of the other sets;
X2 can be mapped onto X1, X4; X3 onto all of the
others; X4 onto X1, X2.

10http://web.maths.unsw.edu.au/~potapov/2111_2015/Continuity-via-preimage.html
11http://web.maths.unsw.edu.au/~potapov/2111_2015/Continuity-via-preimage-_002d_002d-Examples.html
12http://web.maths.unsw.edu.au/~potapov/2111_2015/Non_002dtrivial-example-of-open-subset.html
13http://web.maths.unsw.edu.au/~potapov/2111_2015/Open-and-closed-subsets-under-set-operations.html
14http://web.maths.unsw.edu.au/~potapov/2111_2015/Week-1-Lecture-1.html#index-Theorem_002c-algebraic-properties-of-continuous-curves
15http://web.maths.unsw.edu.au/~potapov/2111_2015/Limit-of-vector-map.html
16http://web.maths.unsw.edu.au/~potapov/2111_2015/Limit-of-vector-map-via-sequences.html
17http://web.maths.unsw.edu.au/~potapov/2111_2015/Image-of-path_002dconnected_002fcompact-subsets.html
18http://web.maths.unsw.edu.au/~potapov/2111_2015/Image-of-path_002dconnected_002fcompact-subsets.html#

Examples-of-usage-of-the-theorem

10

http://web.maths.unsw.edu.au/~potapov/2111_2015/Continuity-via-preimage.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Continuity-via-preimage-_002d_002d-Examples.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Non_002dtrivial-example-of-open-subset.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Non_002dtrivial-example-of-open-subset.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Open-and-closed-subsets-under-set-operations.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Week-1-Lecture-1.html#index-Theorem_002c-algebraic-properties-of-continuous-curves
http://web.maths.unsw.edu.au/~potapov/2111_2015/Limit-of-vector-map.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Limit-of-vector-map-via-sequences.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Image-of-path_002dconnected_002fcompact-subsets.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Image-of-path_002dconnected_002fcompact-subsets.html#Examples-of-usage-of-the-theorem
http://web.maths.unsw.edu.au/~potapov/2111_2015/Continuity-via-preimage.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Continuity-via-preimage-_002d_002d-Examples.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Non_002dtrivial-example-of-open-subset.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Open-and-closed-subsets-under-set-operations.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Week-1-Lecture-1.html#index-Theorem_002c-algebraic-properties-of-continuous-curves
http://web.maths.unsw.edu.au/~potapov/2111_2015/Limit-of-vector-map.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Limit-of-vector-map-via-sequences.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Image-of-path_002dconnected_002fcompact-subsets.html
http://web.maths.unsw.edu.au/~potapov/2111_2015/Image-of-path_002dconnected_002fcompact-subsets.html#Examples-of-usage-of-the-theorem
http://web.maths.unsw.edu.au/~potapov/2111_2015/Image-of-path_002dconnected_002fcompact-subsets.html#Examples-of-usage-of-the-theorem


MATH2111 Higher Several Variable Calculus Tutorial Problems

4 Differentiation

4.1 Partial derivatives and Jacobians

66: Find all first and second order partial derivatives
for the function

z = x5 + y5 − 3x3y3.

67: Let f : R2 → R be defined by

f(x, y) =


xy(x2 − y2)

(x2 + y2)
if (x, y) 6= (0, 0),

0 otherwise.

i) Calculate
∂f

∂x
and

∂f

∂y

first for (x, y) 6= (0, 0) (you can use Maple if you
like) and then for (x, y) = (0, 0).

ii) Show that

∂2f

∂x∂y
(0, 0) 6= ∂2f

∂y∂x
(0, 0).

Discuss!

68: Let

f(x, y) =


2xy

x2 + y2 , if (x, y) 6= (0, 0)

0, otherwise

Does the derivative

∂2f

∂x∂y
(0, 0)

exist?

69: Find
∂f

∂y
(1, y) for the function

f(x, y) = xx
xy

+
(
lnx
)
×

tan−1
[
tan−1

(
sin
[
cos(xy)− ln(x+ y)

])]
.

70: Find a general formula for the Jacobian matrix
of the function f : R3 → R3 defined by

f(x, y, z) =

 xy sin z
xy cos z

x2 + y2 + z2


and find its value at the point (2, 1, 0).

71: Verify that the equation

J(f · g) = gT × Jf + fT × Jg

holds in the case where

f , g : Rn 7→ Rn.

.

4.2 Definition of differentiability, properties

72: If f : Rn 7→ R and a ∈ Rn, show that there
cannot be two different linear functions

` : Rn → R

satisfying

f(a + x)− f(a)− `(x)

‖x‖
→ 0 as x→ 0.

73: Let f : R3 → R be defined by

f(x, y, z) = xy + yz + xz.

Show, using the definition of differentiability (see
these webnotes19), that f is differentiable at the point
(1, 1, 1).

74: Let

f(x, y) = 3
√
xy, x, y ∈ R.

Find

fx(0, 0) and fy(0, 0).

Is this function differentiable at (0, 0)?

75: Let

f(x, y) = 3
√
x3 + y3, x, y ∈ R.

Find

fx(0, 0) and fy(0, 0).

Is this function differentiable at (0, 0)?

19http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-of-vector-map.html
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76: Let

f(x, y) =


sin
(
x2 + y2

)
x2 + y2 , if (x, y) 6= (0, 0)

1, otherwise

Find

fx(0, 0) and fy(0, 0)

and show that this function is differentiable at (0, 0).

77: For a differentiable function f : R2 → R and a
point (x0, y0) ∈ R2 define

∆f = f(x, y)− f(x0, y0)

and define

∆x = x− x0 and ∆y = y − y0.

Define also

df =
∂f

∂x
∆x+

∂f

∂y
∆y.

In many problems, the value of ∆f is approximated
by the value of df . This explained by the fact that

lim
(x,y)→(x0,y0)

|∆f − df | = 0.

Prove the limit above.

[H] 78: Let

f(x, y) =

{
exp

(
− 1
x2+y2

)
, if (x, y) 6= (0, 0)

0, otherwise

Find
fx(0, 0) and fy(0, 0)

and show that this function is differentiable at (0, 0).
Hint: Use the fact that exponential function decays
faster than any power function, i.e., for every inte-
ger n ∈ N, there is a constant Bn > 0 such that

0 < exp
(
−a−1

)
≤ Bnan, ∀a ∈ (0, 1).

You do not need to prove this inequality.

4.3 Best affine approximations

79: What is the best affine approximation to the
function f : R2 → R2

f(x, y) =

[
exy

2

x2 − 3x+ y2

]
at the point (1,−1).

80: When two resistances r1 and r2 are connected in
parallel, the total resistance R (measured in ohms) is
given by:

1

R
=

1

r1
+

1

r2
.

i) Show that
∂R

∂r1
=
R2

r2
1

.

ii) Use the best affine approximation of func-
tion R(r1, r2), to estimate the maximum pos-
sible error in the calculated value of R if the
measured values of r1 and r2 are r1 = 6 ± 0.1
ohms and r2 = 9± 0.03 ohms

81: The specific gravity δ of a solid heavier than wa-
ter is given by

δ =
W

W −W1

where W and W1 are its weight in air and water re-
spectively. W and W1 are observed to by 17.2 and
9.7 gm. Use the best affine approximation of func-
tion δ(W,W1) to estimate the maximum possible er-
ror in the calculated value of δ due to an error of 0.05
gm in each observation.

4.4 Chain Rule, First order

82: Let f : Rn → Rm and g : Rm → Rp and h =
g ◦ f : Rn → Rp and let a ∈ Rn. For each of the
examples below find the left hand side and the right
hand side of the chain rule identity:

Jah = Jf(a)g × Jaf .

12
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i)

f(x, y, z) =

x2 − y2

2xy
z

 ,
g(u, v, w) =

[
u+ w2

u/w

]
,

a = (2, 1, 2).

ii)

f(x, y) =

[
x2 + y
x− 2y2

]
,

g(u, v) =

 2u+ v
sinu
u+ 2v2

 ,
a = (1, 1);

iii)

g(x, y) =
√
x2 + y2,

f(s, t) =

[
est

1 + s2 cos t

]
,

a = (1, 0).

iv)

g(x, y) = exy
2

,

f(t) =

[
t cos t
t sin t

]
,

a =
π

2
.

83: A function f(x, y) is said to be homogeneous of
degree m if f(tx, ty) = tmf(x, y) for every real num-
ber t > 0. Euler’s theorem states that if f is homo-
geneous of degree m and if all its partial derivatives
of first order exist and continuous then

x
∂f

∂x
+ y

∂f

∂y
= mf(x, y).

i) Verify Euler’s theorem for

f(x, y) = Ax2 +Bxy + Cy2

and for

g(x, y) = tan−1 y

x
, x 6= 0.

ii) Prove Euler’s theorem.

iii) Generalise the theorem and prove your gen-
eralisation.

84: Suppose that f : R→ R is differentiable and

z = xy + f
(y
x

)
, (x, y) ∈ R2, x 6= 0.

Show that z satisfies the partial differential equation

x
∂z

∂x
+ y

∂z

∂y
= 2xy.

85: Find ∂w/∂t if

w = f(x, y, z)

and

x = g(s, t), y = h(s, t) and z = k(s, t).

4.5 Directional derivatives

86: Let f : R2 → R be defined by

f(x, y) =


xy2

x2 + y4
if (x, y) 6= (0, 0),

0 otherwise.

Show that for all unit vectors u the directional deriva-
tive of f at the origin in the direction u does exist,
but f is discontinuous at (0, 0). Show that there is no
plane which contains all the lines which are tangent
to the surface z = f(x, y) at (0, 0, 0).

87: For each of the following scalar fields

a) find ∇f

b) graph some level curves f(x, y) = constant,

c) indicate ∇f at some points by arrows on these
curves.

i) f(x, y) = xy

ii) f(x, y) = x2 + y2

iii) f(x, y) =
y

x2
.

88: Let r = x i + y j + z k and r = ‖r‖.

i) Prove that ∇r =
r

r
and ∇

(
1

r

)
=
−r
r3

.

13
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ii) Calculate ∇(cos r), ∇
(

log r

r

)
.

iii) Prove that ∇rn = nrn−2r.

89: In each case find ∇f at the point P and use it to
find the directional derivative of f at P in the direc-
tion of v.

i) f(x, y) = 13x2 + 7xy + 2y, P = (−1, 1),
v = 5i + 12j.

ii) f(x, y, z) = x(x2 + y2 + z2), P = (1, 2,−1),
v = i + j + k.

90: Suppose f(x, y) is a differentiable function, which
has, at the point x, directional derivative 1/

√
2 in the

direction (1, 1) and directional derivative 1/5 in the
direction (3, 4). Find ∇f(x).

91: A bushwalker is climbing a mountain, of which
the equation is h(x, y) = 400−(x2+4y2)/10000. Here
x, y and h are measured in metres, the x-axis points
East and the y-axis points North. The bushwalker is
at a point P , 1600 metres West and 400 metres South
of the peak.

i) What is the slope of the mountain at P in the
direction of the peak?

ii) In which direction at P is the slope greatest?

92: The electrical potential V is given by V (x, y, z) =
x2 − xy + xyz.

i) Find the rate of change of the potential V
at (1, 1, 1) in the direction of the vector v =
i− j + k.

ii) In which direction(s) does V change most
rapidly at (1, 1, 1)?

iii) What is the maximum rate of change of V
at (1, 1, 1)?

93: Skier is on a mountain described by the equa-
tion h(x, y) = 2000 − x4/108 − y2/102 at the point
(100, 1). He skis down the mountain, always moving
in the direction of steepest descent.

i) In what direction does he start moving?

ii) Describe the curve along which he skis. [You
will need to solve a separable first order ODE.]

94: Use the definition of directional derivative to
compute the directional derivative for f at the point
P in the direction u.

i) f(x, y) = 2 − x2/2 − y2, P = (1, 1/
√

2),
u = (1/

√
2,−1/

√
2);

ii) f(x, y) = sin(x2− y2), P = (π, π), u = (1, 0);

[H] 95: Let

u1,u2,u3 ∈ R3

be an orthonormal system and let

f : R3 7→ R

be differentiable. Prove that(
∂f

∂u1

)2

+

(
∂f

∂u2

)2

+

(
∂f

∂u3

)2

=(
∂f

∂x

)2

+

(
∂f

∂y

)2

+

(
∂f

∂z

)2

.

[H] 96: i) Let u be a unit vector. Prove that

∂2f

∂u2
= uTHu,

where H is the Hessian of f .

ii) Let

u1,u2,u3 ∈ R3

be an orthonormal system and let

f : R3 7→ R

be twice differentiable. Prove that

∂2f

∂u2
1

+
∂2f

∂u2
2

+
∂2f

∂u2
3

=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

4.6 Chain rule, Second order

97: Find

∂2z

∂r2
,
∂2z

∂s2
,

∂2z

∂r∂s

in terms of fx, fy and fxx, fxy and fyy, if z = f(x, y)
and x = 3r + s and y = r − s.

[H] 98: Let

f = f(x, y), x, y ∈ R

and let

x = r cos θ and y = r sin θ.

14
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Find
∂f

∂r
and

∂f

∂θ
.

in terms of
∂f

∂x
and

∂f

∂y

and vice versa.

[H] 99: Let
f = f(x, y), x, y ∈ R

and let
x = r cos θ and y = r sin θ.

i) Find
∂2f

∂r2
,

∂2f

∂r∂θ
and

∂f

∂θ
.

in terms of

∂f

∂x
,

∂2f

∂x∂y
and

∂f

∂y
.

ii) Find the converse relation.

[H] 100: Use computations of Question 99 to compute
the Laplacian operator

∆f = fxx + fyy

in polar coordinates

x = r cos θ and y = r sin θ.

101: Let z = f(x, y) and x = eu cos v and y =
eu sin v and f have continuous second-order partial
derivatives.

i) Show that

∂2z

∂u2
= x2 ∂

2f

∂x2
+ 2xy

∂2f

∂x∂y
+ y2 ∂

2f

∂y2

+ x
∂f

∂x
+ y

∂f

∂y
.

ii) Show that

∂2z

∂u∂v
= (x2 − y2)

∂2f

∂x∂y

+ xy

(
∂2f

∂y2
− ∂2f

∂x2

)
− y ∂f

∂x
+ x

∂f

∂y
.

102: If g(t) = f(x, y, t) where x = cos t and y = sin t,
express the derivative of g in terms of the partial
derivatives of f .

103: If g(u, v) = f(x, u, v) where x is a function of u

and v, express
∂g

∂u
in terms of the partial derivatives

of f and x.

104: Given that

u = f(x+ ct) + g(x− ct),

where f , g are twice-differentiable functions of one
variable and c is a constant, show that u satisfies the
wave equation

∂2u

∂t2
= c2

∂2u

∂x2
.

105: A function f of two variables is called harmonic
if it satisfies Laplace’s equation

∂2f

∂x2
+
∂2f

∂y2
= 0.

Show that if f(x, y) is harmonic then

f(x2 − y2, 2xy)

is also harmonic.

Answers to problems

A66: ∂z/∂x = 5x4−9x2y3, ∂z/∂y = 5y4−9x3y2,
∂2z/∂x2 = 20x3 − 18xy3, ∂2z/∂x∂y = −27x2y2,
∂2z/∂y2 = 20y3 − 18x3y. A67: See these web-
notes20 for solution A68: No A69: 0.

A70: Jxf =

y sin z x sin z xy cos z
y cos z x cos z −xy sin z

2x 2y 2z

,

J(2,1,0)f =

0 0 2
1 2 0
4 2 0

. A74: fx = 0, fy = 0; f

is not differentiable, see these webnotes21 for solution

20http://web.maths.unsw.edu.au/~potapov/2111_2015/Clariaut-Theorem.html
21http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-Example-II.html
22http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-Example-III.html
23http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-of-vector-map.html
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A75: fx = 1, fy = 1; f is not differentiable, see
these webnotes22 for solution

A76: fx = 0, fy = 0; see these webnotes23 for
solution

A78: fx = 0, fy = 0; see these webnotes24 for
solution

A79:

[
e
−1

]
+

[
e −2e
−1 −2

] [
x− 1
y + 1

]
A80: ii) .0408

A81: 0.024

A85: fxgt + fyht + fzkt. A87: i) y i + x j,
2x i+ 2y j, −2y/x3 i+ 1/x2 j. A88: i) −(sin r/r)r,
[(1−log r)/r3]r. A89: i) −155/13, ii) 10/

√
3. A90:

(3,−2). A91: i) 8/5
√

17, ii) North East.

A92: i)
√

3, ii) ±(2 i + k), iii)
√

5.

A93: i) 2 i+ j, ii) y = exp
[
−2.5× 105/x2 + 25

]
.

A94: i) 1− 1√
2

, ii) 2π.

A95: See these webnotes25 for solution A98:
see these webnotes26 for solution; see these web-
notes27 for alternative solution A99: (i) ∂2f/∂r2 =
cos2 θ fxx + sin 2θ fxy + sin2 θ fyy,
∂2f/∂θ2 = r2(sin2 θ fxx − sin 2θ fxy + cos2 θ fyy) −
r(cos θ fx + sin θ fy),
∂2f/∂r∂θ = r/2 sin 2θ(fyy − fxx) + r cos 2θ fxy −
sin θ fx + cos θ fy; see these webnotes28 for solution
A100: ∆f = frr + 1

r2 fθθ + 1
rfr; see these webnotes29

for solution A102: dg/dt = − sin t ∂f/∂x + cos t
∂f/∂y + ∂f/∂t. A103: ∂g/∂u = ∂f/∂x ∂x/∂u +
∂f/∂u.

5 Taylor series, tangent planes, local and global extrema, Lagrange
multipliers

[M] – Maple/Gnuplot; [A] – additional/optional problems; [H] – harder problems.

5.1 Taylor series

106: Find the Taylor series, about the point (1, 1) for

f(x, y) = x2 + y2 + xy − x− y.

What is the Taylor series for f about the point (0, 0)?

107: Use a Taylor series to express

x(2 + x− 2y2) + 2y2

in terms of powers of x− 1 and y + 1.

108: Without finding the partial derivatives of

f(x, y) = ex cos y,

find the terms up to and including order 4 in the
Taylor series for f about (1, 0).

5.2 Applications of the gradient

109: Show that the curve

r(t) = t2 i + t j + (5t− 4)k

is normal to the surface

2x2 + y2 + 5z2 = 8

at the point (1, 1, 1).

110: Find the equation for the tangent plane to the
surface

x2 + y2 + z = 9

at the point (1, 1, 7).

111: Given that k is a positive real number, find the
equation of the tangent plane to the surface

√
x+
√
y +
√
z =
√
k,

at a general point P (a, b, c) lying on the surface. Show
that the sum of the intercepts of this plane on the
three coordinate axes is independent of the point P .

24http://web.maths.unsw.edu.au/~potapov/2111_2015/Differentiability-Example-IV.html
25http://web.maths.unsw.edu.au/~potapov/2111_2015/Example-of-directional-derivative.html
26http://web.maths.unsw.edu.au/~potapov/2111_2015/f_005fx-and-f_005fy-via-f_005fr-and-f_005ftheta.html
27http://web.maths.unsw.edu.au/~potapov/2111_2015/f_005fx-and-f_005fy-via-f_005fr-and-f_005ftheta-II.html
28http://web.maths.unsw.edu.au/~potapov/2111_2015/f_005fxx-and-f_005fyy-via-f_005frr-and-f_005ftt-and-f_005fr.html
29http://web.maths.unsw.edu.au/~potapov/2111_2015/f_005fxx-and-f_005fyy-via-f_005frr-and-f_005ftt-and-f_005fr.html
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112: Show that the tetrahedron bounded by the co-
ordinate axes and the tangent plane at any point P
on the surface

xyz = 1

has a volume which is independent of the point P .

113: Show that if f : R→ R is a differentiable func-
tion then all the tangent planes to the surface

z = y f

(
x

y

)

meet in a point.

[H] 114: Assuming that the equation

ez − y + xz = 0

defines z as a function of x and y with z(1, 1) = 0 and
that this function has a Taylor series about (1, 1), find
the terms up to and including order 2 in this Taylor
series and use this to find an approximate value for z
when x = 1.01 and y = 0.9.

5.3 Absolute maximum and minimum

115: Find the greatest and the least values of the
function

z = x3 + y3 − 3xy

on the region

{(x, y) : 0 ≤ x ≤ 2, −2 ≤ y ≤ 2},
along with the points at which the extreme values
occur.

116: Find the greatest and the least values of the
given function on the given region and the points at
which they occur.

i) z = x2 + y2 − xy − y − x,

0 ≤ x ≤ 3 and 0 ≤ y ≤ 3.

ii) z = x3 + y3 − 3xy,

0 ≤ x ≤ 2 and − 2 ≤ y ≤ 2.

117: Find the greatest and least values of

f(x, y) = x2 − y2

on the triangular region T with vertices at

(0, 2) and (±1,−1).

5.4 Local maximum and minimum, saddle points

118: Find and classify the critical points of the fol-
lowing functions from R2 to R.

i) x3 − y3 − 2xy + 4.

ii) 6x2 − 2x3 + 3y2 + 6xy.

iii) (x2 + y2)2 − (x2 − y2).

119: Verify that the function

f(x, y, z) = x4 + y4 + z4 − 4xyz

has a stationary point at (1, 1, 1), and determine the
nature of this stationary point by computing the
eigenvalues of its Hessian matrix.

5.5 Constrained extrema and Lagrange multipliers

120: Find the maximum and minimum values of

f(x, y, z) = x+ 2y − 3z

on the sphere

x2 + y2 + z2 = 14.

121: Find the dimensions of a rectangular box, open
at the top, which has maximum volume if the surface
area is 12 square units.

122: Prove the following inequality(
x+ y

2

)n
≤ xn + yn

2
,

for every

x, y ≥ 0 and n ≥ 1.

Hint: Minimise the function

f(x, y) = xn + yn

17



MATH2111 Higher Several Variable Calculus Tutorial Problems

subject to constraint

x+ y = a.

123: Find the maximum value of

f(x, y, z) = lnx+ 2 ln y + 3 ln z

on the part of the sphere

x2 + y2 + z2 = r2

lying in the first octant. Deduce that for any positive
real numbers a, b, c we have

ab2c3 ≤ (a2 + b2 + c2)3

12
√

3
.

124: Find the points on the curve

x2 + xy + y2 = 2

that are closest to the origin.

[H] 125: If a > 0 and b2 < ac, the equation

ax2 + 2bxy + cy2 = 1

describes an ellipse E with centre at the origin. Show
that the formula√

2

(a+ c)±
√

(a− c)2 + 4b2

gives the distances from the origin to the nearest and
furthest points on the curve E. [Hints: First show
that if you apply the Lagrange method to λf − g
(which is equivalent to using the usual f + λg) then
the values of the Lagrange multipliers λ for this prob-
lem are the eigenvalues of the (symmetric) matrix

A =

[
a b
b c

]
and hence find expressions for these λs in terms of a,
b, c. Observe that if x = (x, y) then the equation for
E can be expressed as

xTAx = 1.

Show that if x satisfies this equation and is an eigen-
vector of A then

λxTx = 1.]

5.6 Lagrange multipliers, two contraints, non compact

[H] 126: Prove the Hölder inequality

ax+ by ≤ (ap + bp)
1
p × (xq + yq)

1
q ,

where
x, y, a, b ≥ 0 and p, q ≥ 1

and
1

p
+

1

q
= 1.

Hint: Maximise the function

f(x, y) = ax+ by

subject to constraint

xq + yq = c.

[H] 127: A pentagon is made by putting an isosceles tri-
angle on one side of a rectangle. What dimensions
will minimise the perimeter of the pentagon for a
given area A?

[H] 128: An open-topped metal water tank with volume
2 m3 is to be constructed with vertical sides and a
right-angled triangle as base. What should be the di-
mensions of the base to minimise the area of metal
used?

129: Find the point closest to the origin on the in-
tersection of the planes

x+ 2y = 12 and y + z = 6.

Answers to problems

A106: 1 + 2(x − 1) + 2(y − 1) + (x − 1)2 + (y −
1)2 + (x− 1)(y − 1), −x− y + x2 + xy + y2.

A107: 3 + 2(x− 1) + (x− 1)2 + 4(x− 1)(y+ 1)−

2(x − 1)(y + 1)2. A108: e

[
1 + (x − 1) +

1

2
(x −

1)2 − 1

2
y2 +

1

6
(x − 1)3 − 1

2
(x − 1)y2 +

1

24
(x − 1)4

− 1

4
(x − 1)2y2 +

1

24
y4

]
. A110: 2x + 2y + z =

11. A113: The point is the origin. A114:

18
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1
2 (y−1)− 1

4 (x−1)(y−1)− 1
16 (y−1)2, z = −0.050375

(the correct value is z = −0.0503719....) A115: min
−8 at (0,−2), max 8 + 4

√
2 at (2,−

√
2). A116: i)

min −1 at (1, 1), max 6 at (3, 0) and (0, 3). ii) min
−8 at (0,−2), max 8+4

√
2 at (2,−

√
2). A117: min

−4 at (0, 2), max 1/2 at (±3/4,−1/4). A118: i)
S.P. (0, 0), max (−2/3, 2/3) ii) S.P. (1,−1), min (0, 0)
iii) S.P. (0, 0), min

(
±1/
√

2, 0
)
.

A119: Eigenvalues are 4, 16, 16 so (1, 1, 1) is
a minimum. A120: max = 14, min = −14.

A121: 2 × 2 × 1. A123: ln
r6

12
√

3
. A124:(

±
√

2/3,±
√

2/3
)
. A126: See these webnotes30

for solution A127: The triangle should have height

h =
√
A/(6 + 3

√
3) and base 2h

√
3. The remaining

side of the rectangle should have length (1 +
√

3)h.
A128: The base should have two sides of length
(8 + 4

√
2)1/3. A129: (2, 5, 1)

6 Implicit differentiation, Implicit and Inverse Function Theorems

6.1 Implicit differentiation

130: Assuming that the equations

x2 + yu+ xv + w = 0,

x+ y + uvw + 1 = 0

define x and y as differentiable functions of u, v and
w, find

∂x

∂u
and

∂y

∂u
,

where x = 1, y = −1, u = 1, v = 1 and w = −1.

131: Assuming that the equations

x2 + y2 + u2 + v2 = 1,

x2 + 2y2 − u2 + v2 = 1,

define x and y as differentiable functions of u and v,
find (in terms of u, v, x, y) formulae for

∂x

∂u
,
∂y

∂u
,
∂2x

∂u2
and

∂2y

∂u2
.

132: Assuming that the equation

F (x, y, z) = 0

defines z implicitly as a differentiable function of x
and y and that

Fxz = Fzx,

show that

∂2z

∂x2
=
−(Fz)

2Fxx + 2FzFxFxz − (Fx)2Fzz
(Fz)3

.

6.2 Inverse and implicit function theorems

133: For x ∈ R and y > 0, let f be defined by

f(x, y) =

[
x2 + ln y
x4 + y3

]
.

Let x0 = (1, 1).

i) Show that f has a local C1 inverse near near
f(x0). Find the Jacobian matrix at f(x0) for
this local inverse.

ii) Find the best affine approximation to f−1

near f(x0). Use this to find an approximate so-
lution to the pair of equations x2 + ln y = 1.05,
x4 + y3 = 1.90.

134: Let f : R2 → R2 be defined by

f(x, y) =

[
x3 − 2xy2

x+ y

]
and let x0 = (1, 1).

i) Show that for every b in some neighbourhood
of f(x0) the non-linear system of equations
f(x) = b has a solution for x in terms of b.

ii) Is the solution in (i) unique for every b?

iii) Find the Jacobian matrix at f(x) for the
function which gives x in terms of b and use
this to find an approximate solution to the pair
of equations x3 − 2xy2 = −1.01, x+ y = 2.01.

30http://web.maths.unsw.edu.au/~potapov/2111_2015/Holder-inequality.html
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135: For f : R2 → R2 defined by

f(x, y) =

[
ex cos y
ex sin y

]
,

show that f has a local C1 inverse near every point
in R2 but does not have a global inverse R2 → R2.

136: Show that in some neighbourhood Ω of (x, y) =
(1, 1) in R2 the equations

x− y + 2u+ v + 2w − 1 = 0,

x− 2y − uv − w + 1 = 0,

x2 + y + (u+ v)w = 0,

define a differentiable function f : Ω → R3 taking
(x, y) to (u, v, w) with f(1, 1) = (1, 1,−1). Find
J(1,1)f .

137: Show that in some neighbourhood of
(x, y, u, v) = (0, 1, 2, 1) in R4 the non-linear system

exyu + yuv + x− 3 = 0,

ln yv + xu3v − x3u = 0,

has a unique solution
(
x, y, u(x, y), v(x, y)

)
for ev-

ery (x, y) and this solution depends differentiably on
(x, y). That is, show that there is a C1 function
f : R2 → R2 so that for (x, y) near (0, 1), and(

u

v

)
= f

(
x

y

)
.

(x, y, u, v) satisfy the non-linear equations. Find the
best affine approximation to f at (0, 1) and also for
its inverse and use these to find an approximate so-
lution with x = 0.01 and y = 1.05 and another one
with u = 1.99 and v = 1.05.

138: This question is about whether or not the equa-
tions

xyt+ sinxyt = 0,

x+ y + t = 0,

define x and y as functions of t.

i) Show that the equations do define x and y
uniquely as differentiable functions of t near
(x, y, t) = (0, 1,−1).

ii) Show that the assumptions of the Implicit
Function Theorem are not satisfied at (x, y, t) =
(0, 0, 0).

iii)* To confirm that there is no neighbourhood
of (0, 0, 0) in which the equations define x and y
uniquely as functions of t, find two straight lines
through the origin in (x, y, t)-space on which all
points satisfy the given equations.

Answers to problems

A130: 0, 1.
A131: −3u/x, 2u/y, −(3x2 + 9u2)/x3, (2y2 −

4u2)/y3. A133: x = 1.125, y = 0.8.
A134: (ii) there will be a unique solution near

x0, but other solutions also exist.
(iii) x = 1.006, y = 1.004. A136:

1

3

−5 12
9 −15
−1 −3

. A137: (0.01, 1.05, 2.13, 0.87),

(−0.01/13, 12.43/13, 1.99, 1.05). A138: The lines
(x, y, t) = λ(1, 0,−1), λ ∈ R, and (x, y, t) =
λ(0, 1,−1), λ ∈ R.
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7 Integration

7.1 Double integrals, definition

139: Let R be the rectangle

{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

}
and Pn be the partition of [0, 1] given by

Pn =
{ k
n

: 0 ≤ k ≤ n
}

and let Qn be the partition of [0, 2] given by

Qn =
{ k
n

: 0 ≤ k ≤ 2n
}
.

Calculate the Riemann sum for f(x, y) = x2y2 with
respect to these partitions, using the lower left cor-
ner of each sub-rectangle as the point at which f is
evaluated. Find the limit of this Riemann sum as
n→∞.

7.2 Double integrals via repeated integrals

140: Evaluate the integral of f(x, y) = xy over the
region bounded by the x-axis, the line x = 2a and
the parabola x2 = 4ay.

141: For each of the following integrals, sketch the
region of integration, reverse the order of integration
and evaluate the integral.

i)

∫ π/2

0

∫ π/2

y

sinx

x
dx dy,

ii)

∫ 1

0

∫ 1

x

yλ

x2 + y2
dy dx, where λ > 0,

iii)

∫ 1

0

∫ x1/3

x

√
1− y4 dy dx,

iv)

∫ 2

1

∫ x3

x

√
x/y dy dx+

∫ 8

2

∫ 8

x

√
x/y dy dx.

7.3 Triple integrals via repated integrals

142: Evaluate

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0

dz dy dx

and interpret the answer as a volume. More gener-
ally, find the volume of the tetrahedron bounded by
the planes

x

a
+
y

b
+
z

c
= 1, x = 0, y = 0, z = 0.

143: Evaluate ∫∫∫
S

x2 dx dy dz,

where S is the region bounded by

4x2 + y2 = 4, z + x = 2 and z = 0.

144: Find the volume of the region enclosed be-
tween the parabolic cylinder z = y2 and the elliptic
paraboloid z = 16− 4x2 − y2.

7.4 Leibniz’ rule

145: Given that∫ π

0

dx

t− cosx
=

π√
t2 − 1

, t > 1,

evaluate ∫ π

0

dx

(2− cosx)2
.

146: i) Show that if x(t) satisfies the integral

equation

x(t) = a+ bt+

∫ t

0

(t− s)f
(
x(s)

)
ds

then x(t) is a solution to the initial value prob-
lem

x′′(t) = f(x(t))

for t > 0, with x(0) = a, x′(0) = b.
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ii) Prove the converse of the result in part (i).
[Hint: You will need to do a change of order of

integration in a double integral.]

147: i) Prove that if the mixed derivatives fxy
and fyx are continuous then they are equal.
Hint: Use Leibniz’ rule and both versions of
the Fundamental Theorem of Calculus to find

∂

∂y

∂

∂x

∫ y

c

fy(x, t) dt

in two different ways.

ii) Re-examine your proof in part (i) to confirm
that to prove fxy exists and equals fyx on

R = [a, b]× [c, d]

you need only assume that fy and fyx exist and
are continuous on R and that fx(x, c) exists for

a ≤ x ≤ b.

iii) Using Fubini’s theorem (as a theorem about
equality of iterated integrals with different or-
ders of integration) and both versions of the
Fundamental Theorem of Calculus, prove Leib-
niz’ Rule. Hint: Find

d

dx

∫ d

c

[∫ x

a

fx(t, y) dt

]
dy

in two different ways.

7.5 Double integrals in polar coordinates

148: Use polar co-ordinates to evaluate∫ 2

0

∫ √2y−y2

−
√

2y−y2

√
x2 + y2 dx dy.

149: A plane region R is determined by the inequal-
ities

y ≥ 0 and y ≥ −x
and

x2 + y2 ≤ 3
√
x2 + y2 − 3x.

Sketch the region and find its area.

150: i) Evaluate∫ ∞
0

∫ ∞
0

exp(−x2 − y2) dx dy.

[Hint: Evaluate∫∫
R

e−x
2−y2 dx dy,

where R is a quarter circle of radius M . Then
let M →∞. Be aware that this is an improper
integral and we really should say how it is de-
fined!]

ii) Use the result of part (i) to evaluate∫ ∞
0

e−x
2

dx

and hence evaluate∫ ∞
0

t−1/2e−t dt.

[H] 151: For r > 0 and n a positive integer, let Vn(r) be
the volume of the n-dimensional ball

Bn(r) = {x ∈ Rn : ‖x‖ ≤ r }.

i) Show that, for n ≥ 3,

Vn(a) =

∫ 2π

0

dθ

∫ a

0

Vn−2

(√
a2 − r2

)
r dr.

ii) Assuming that Vn(r) = knr
n, where kn is in-

dependent of r, show that the sequence {kn}
satisfies the recurrence relation

kn = (2π/n) kn−2,

for n ≥ 3, with k1 = 2 and k2 = π.

iii) The Gamma function is defined for real x >
0 by

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Prove that

Γ(x+ 1) = xΓ(x)

and deduce that the sequence

kn =
πn/2

Γ( 1
2n+ 1)

.

satisfies the recurrence relation and initial con-
ditions in part (ii). [Note that Γ( 1

2 ) was evalu-
ated in the previous question.]

iv) Deduce that

Vn(r) =
πn/2rn

Γ( 1
2n+ 1)

, n ≥ 1,

and in particular

V2n(r) = πnr2n/n!

for all positive integers n.
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7.6 Cylindrical and spherical coordinates

152: Find the volume of the solid enclosed between
the spheres

x2 + y2 + z2 = 4 and x2 + y2 + z2 = 4z.

153: Find the volume inside the cone

z + 2 =
√
x2 + y2

between the planes z = 0 and z = 1. [Hint: The
innermost integration should be with respect to r.]

154: A cylindrical hole 10cm long and 6cm in diame-
ter is drilled through the centre of a steel ball with the
axis of the hole being a diameter of the ball. What is
volume of steel left in the resulting solid?

[H] 155: Let a > 0. Find the volume of the region spec-
ified by

x2 + y2 ≤ a2, x2 + z2 ≤ a2 and y2 + z2 ≤ a2.

156: Express as a triple integral using

i) Cartesian co-ordinates

ii) cylindrical co-ordinates

iii) spherical co-ordinates

the volume of the region above the cone

z =
√
x2 + y2

and inside the sphere

x2 + y2 + z2 = 2az, (a > 0).

Evaluate the volume by spherical co-ordinates.

157: A solid occupies the region Ω bounded above
by the sphere

x2 + y2 + z2 = 9

and below by the cone

x2 + y2 = z2

and its density function is

δ(x, y, z) = 2 + x2 + y2 + z2.

Use spherical coordinates to find the moment of iner-
tia of this solid about the z-axis, i.e. calculate∫∫∫

Ω

(x2 + y2)δ(x, y, z) dx dy dz.

158: Use spherical coordinates to find the volume en-
closed by the surface

(
√
x2 + y2 − 1)2 + z2 = 1.

7.7 Other changes of variable

159: Evaluate ∫∫
Ω′
x2y2 dx dy,

where Ω′ is the bounded portion of the first quadrant
lying between the two hyperbolas

xy = 1 and xy = 2

and the two straight lines

y = x and y = 4x.

160: Let Ω′ be the region in the first quadrant
bounded by the hyperbolas

x2 − 2y2 = 1, x2 − 2y2 = 3

and
xy = 1, xy = 2.

Let
u = x2 − 2y2 and v = xy.

Sketch the region Ω′ in the (x, y)-plane and the region
Ω in the (u, v)-plane that corresponds to Ω′. Hence
evaluate∫∫

Ω′
(x2 − 2y2)x2y2(2x2 + 4y2) dx dy.

[Hint: You will not need to solve for x and y in terms
of u and v because the Jacobian cancels with the awk-
ward factor in the integrand.]

161: Integrate the function (xy)−1 over the region Ω′

bounded by the four circles

x2 + y2 = ax and x2 + y2 = a′x

and
x2 + y2 = by and x2 + y2 = b′y,
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where

a < a′ and b < b′.

[Hint: u = (x2 + y2)/x is constant on two of the
circles.]

162: i) By means of the formula for the volume
of an n-dimensional ball, find the volume en-
closed by the hyperellipsoid{

x ∈ Rn :

n∑
i=1

(xi/ai)
2 = 1

}
,

where ai > 0 for i = 1, 2, . . . , n.

ii) Use spherical coordinates to evaluate∫∫∫
B

z2 dx dy dz,

where B is the unit ball centred at the origin
in R3. What is the value of∫∫∫

B

y2 dx dy dz?

iii) A solid occupies the region Ω in R3 enclosed
by the ellipsoid(x

a

)2

+
(y
b

)2

+
(z
c

)2

= 1,

where a, b, c are all positive. Find the moment
of inertia of this solid about the x-axis if the
density is a constant k, i.e. evaluate∫∫∫

Ω

k(y2 + z2) dx dy dz.

[Hint: use the results of part (ii).]

7.8 Mass and centre of mass

163: A lamina is bounded by the curves

x2 + y2 = 1 and 2x+ y = 1

in the first quadrant. Find the mass of this lamina if
it has density x2y gm/unit2.

164: A plane lamina is bounded by the curves

y = x2 and y = x3

in the first quadrant. Its density function is

δ(x, y) =
√
xy.

Find its centre of mass.

165: Find the centre of mass of the region V in R3

where

x2 + y2 ≥ 1, x2 + y2 + z2 ≤ 2 and y ≥ 0,

given that the density function for the region is

δ(x, y, z) = (x2 + y2)−1/2.

Answers to problems

A139: 8/9
A140: a4/3. A141: i) 1 ii) π/4λ iii) π/8− 1/6

iv) 49/3 A142: 1/6; abc
6 .

A143: π. A144: 32π
√

2. A145: 2π/33/2.
A148: 32/9.
A149: 9(9π − 8

√
2 − 2)/16. A150: i) π/4, ii)√

π/2,
√
π. A152: 10π/3.

A153: 19π/3. A154: 256π/3. A155:
8a3(2 −

√
2). A156: πa3. A157: 34π(8 −

5
√

2)(2/5 + 9/7)/2 ≈ 199.24. A158: 2π2. A159:
(7/3) ln 2.

A160: 28/3. A161: ln(a′/a) ln(b′/b).

A162: i)
πn/2

Γ( 1
2n+ 1)

∏n
i=1 ai, ii) both equal

4π

15
,

iii)
4πkabc(b2 + c2)

15
A163: 31/480 A164:

(54/77, 6/13). A165:
(
0, 8/(3π(π − 2)), 0

)
.
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