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Riemann Integral (one variable)

A set of points P = {xg, x1,X2,...,Xn}, Where a=xg < x3 < x < --- < x, = b,
is called a partition of [a, b]. For a function f : [a, b] — R, the upper and lower
Riemann sums of f with respect to P are

k=1

Sp(f) = kaAXk and 37>(f) = Z?kAXk
k=1

where f, and fi are the infimum and supremum of f on [Xk—1, Xx] and
AXk = XK — Xk—1-

For a bounded function f : [a, b] — R, if there exists a unique number | such that
Sp(f) <1< Sp(f)

for every partition P of [a, b], then f is Riemann integrable on [a, b] and

b
I:/ f:/ f(x)dx.
[a,b] a
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Integration
First consider f : R — R, where R = [a, b] x [c, d] is a rectangle in R2.

Let

Py = {3:X07X1,X2,---7Xn = b}

be a partition of [a, b] and

P2 - {C:y07y17_y27'°'7.ym = d}

a partition of [c, d].

Yo ==
) ) 1 : H Lo
Then R is the union of the mn I S S i
subrectangles Xp X1 X2X3 Xa Xs
Rjk = [Xj—1,Xj] X [)/k—l,)/k]-
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Integration

The upper and lower Riemann sums of f with respect to these partitions are

Sp, p(f) = ijkAXJAYk
Jk
and
3731,732(7() - Z?JkAXJAyk
Jok
Yo == :
The sums are over all pairs (j, k) with pooi P 4
Xo X1 X2X3 X4 Xs

1<;j<n and 1<k<m.

The numbers f; and fx are the infimum and supremum of f on Ry and Ax; and
Ayy its width and height.
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Integration

Definition (Riemann integral)

For a bounded function f : R — R, if there exists a unique number / such that
Sp, p,(f) <1 < Sp, p.(f)

for every pair of partitions Py, P> of R, then f is Riemann integrable on R and

/://Rf:/Rf(x,y) dA

| is called the Riemann integral of f over R.
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Riemann Integral

For a function of one variable, the Riemann integral is interpreted as the (signed)
area bounded by the graph y = f(x) and the x-axis over the interval [a, b]. For a
function of two variables, [/ f is the (signed) volume bounded by the graph

z = f(x, y) and the xy-plane over the rectangle R.

Properties:

If f and g are integrable on R,

1) Linearity: //ozf—l—ﬁgzoz//f—l—ﬁ//g, a, B8 e R.

(2) Positivity (monotonicity): If f(x) < g(x) for all x € R then // f< //

o=

) If R= Ry UR,> and (interior Ry)N(interior R>) = () then

M=l Il
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L ower sum

A lower sum of f over R.

Sp, 7y (F) = Y £ Ay
Jk
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Upper sum

An upper sum of f over R.

Spypa(f) = Z7jkA><jAyk-
ik
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Fubini's theorem on rectangles

Theorem (Fubini’s Theorem (version 1))

Let f : R — R be continuous on a rectangular domain R = [a, b] X [c,d]. Then

/ab/cdf(x,y)dydx:/Cd/abf(x,y)dxdy://Rf.

/a b / (o) dyele
/ab (/Cd f(x,y)dy) dx.

The integral inside the brackets is, for each x, a one variable integral.

Note that

means
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Fubini’'s theorem on rectangles

Example: Calculate the integral of f : R?2 — R, where f(x,y) = xy3, over the
rectanglur region R = [0, 3] x [1,2].

Fubini's theorem for rectangular regions says gives two ways of calculating this
integral.

Let's integrate first with respect to y.
3 2 371 2
/f:/ / xy>dy dX:/ |:—X)/4] dx Y
R o J1 o L4 1
315 ?
:/ —x dx
o 4 1
15 [1 ,]°
= — |=x
4 12 |,

135
5

w ——
X
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Fubini's theorem on rectangles

We can also integrate first with respect to x.

2 /3 211 3
/f:/ / xy> dx dy:/ [—x2y3] dy y
R 1 Jo 1 L2 0
5 2
_/ 9 3d
1 27 1
S |
9y I
2 |14 1 3 x
13
==

In this case we also have

2 3 2 3 2 3
/f:/ / xy3dxdy:/ y3/ xdx dy = </ % dy) </ xdx).
R 1 Jo 1 0 1 0
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Fubini’'s theorem on rectangles

Fubini's theorem is essentially the same as the method of slicing for calculating
volumes from first year. However, proving the iterated integrals give the same
number for the volume as the definition involves some subtlety.

The lower Riemann sum can be written as a double sum.

Sp,pa(f) =D £ BxByc =) | D £;,8% | Ay
ok

k=1 \ j=1

and it is tempting to consider the sum in the brackets as a one variable Riemann
lower sum of f(x,y) for a fixed value of y. However, f; , is not necessarily an
infimum for f(x, y) as a function of x for any particular fixed value of y.

One way around this problem is to use the continuity of f to show that
> i—1fj kAx;j can be made to be within ¢ of the one variable lower sum of
f(x, yk) by requiring the spacing in the partition P, to be sufficiently small.

A more eligant approach can be found on pages 65-70 of the Internet Supplement
to Marsden and Tromba 5th Edition.
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http://www.whfreeman.com/MarsdenVC5e
http://www.whfreeman.com/MarsdenVC5e

Riemann integral over more general regions

Theorem (Integrability of bounded functions)

Let f : R — R be a bounded function on the rectangle R and suppose that the set
of points where f is discontinuous lies on a finite union of graphs of continuous
functions. Then f is integrable over R.

The proof of this theorem is exercises 4, 5 and 6 from the Internet Supplement to
Marsden and Tromba. The essence of the proof is that the contribution to the
upper and lower Riemann sums from subrectangles containing the the lines of
discontinuity can be made arbitrarily small by taking the width of subintervals in
the partitions to be small enough.
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Riemann integral over more general regions

Theorem (Fubini’s Theorem (version 2))

Let f : R — R be bounded on a rectangular domain R = [a, b] x [c, d] with the
discontinuities of f confined to a finite union of graphs of continuous functions. If

d
the integral / f(x,y)dy exists for each x € [a, b], then

e ()

b
Similarly, if the integral / f(x,y)dx exists for each y € [c,d], then

//Rf - /cd (/b f(x,y)dx> dy.

: : : : d :
Since f is not continuous there is no guarantee that [~ f(x, y)dy exists for each x

b .
or that [ f(x,y)dx exists for each y.
MATH2111 Integration Semester 1, 2014 14 / 58




Riemann integral over more general regions

An elementary region is a region of the type illustrated below.

A y-simple region. An x-simple region.
y y
d
y = ¢2(x)
! yi= ¢1(x) c
a b X X

D1 = {(x,y) : x € [a,b] and ¢1(x) < y < ¢a(x)}

where ¢ and ¢, are continuous functions from [a, b] to R.

Dy = {(x,y) : y € [c,d] and 1(y) < x < 9ha(y)}

where 1)1 and v, are continuous functions from [c, d] to R.
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Riemann integral over more general regions

Suppose D is an elementary region, R a rectangle containing D and f a function
from D to R. First extend f to a function defined on all of R by

F(x.y) = f(x,y) if(x,y)eD
Y70 if (x,y) ¢ D and (x,y) € R.

Then f is integrable on D if f* is integrable on R and

et

If £ is continuous except perhaps on a set of points made from the graphs of
continuous functions, then f* also has this property and so the second version of
Fubini's theorem gives us a way to calculate the integral of f over D as an
iterated integral.
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lterated integrals for elementary regions
Suppose D; is a y-simple region contained in R = [a, b] x [c, d] and bounded by

x=a, x=b,y=¢1(x) and y = ¢»(x), and f : D; — R is such that f* satisfies
the conditions of Fubini’'s Theorem (version 2). Then

=) [ [ terapes

but since f*(x,y) =0 for y < ¢1(x) or y > ¢a(x),

$2(x) ¢2(x)
/ f*(x,y)dy = / . *(X,y)dy=/¢() f(x,y)dy

//le—/ /1(x) (x, y)dydx.

A similar result hold for integrals of x-simple regions like Ds.

P2(y)
// f= / / f(x,y)dxdy.
D. Y1(y)
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and hence

Notes

The properties of the integral over rectangular regions also apply to more general
regions.

The area of a region D of R? is given by [[, 1. (That is, the integral of the
function f(x,y) =1 over D.)

Everything that we have done for integrals in R? extends to R”.

The volume of a region D of R? is given by [[, 1. (That is, the integral of the
function f(x,y,z) =1 over D.)
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Fubini's theorem

(a) Find the integral of f(x,y) = x?y over the triangular region Q with vertices
(0,0), (0,1) and (1,0).

(b) For each of the following two integrals, find the region over which the
integral is calculated and reverse the order of integration.

(i)
1 2—2x
L= / / f(x,y)dydx.

0 0
(i)

1 v/ 1—x2

L= / / f(x,y)dydx.
—1Jx-1
MATH2111 Integration Semester 1, 2014 19 / 58

Fubini's theorem

(a) Find the integral of f(x,y) = x?y over the triangular region Q with vertices
(0,0), (0,1) and (1,0).

(b) For each of the following two integrals, find the region over which the
integral is calculated and reverse the order of integration.

(i)
I = /0 1 /0 T F e, y)dydx.

1 v 1—x2
L= / / f(x,y)dydx.
—1Jx—-1
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Fubini’'s theorem examples

Example (a): Find the integral of f(x,y) = x2y over the triangular region Q with
vertices (0,0), (0,1) and (1,0).

Fubini's theorem gives two ways of calculating this integral.

Let's integrate with respect to y first.

1—x 1 1—x
/f_// xydydx_/ [§x2y2] dx vy
0

:/o §x2(1—x)2 dx

1
1
== x% = 2x3 4+ x* dx
2 0
1
1 1 1
B s B ST
3 2 5 |, X
1
60
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Fubini’'s theorem examples

Now check this by integrating with respect
to x first.
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Fubini’'s theorem examples

Example (b) (i): Find the region over which the integral

1 2-2x
h = / / f(x,y) dydx
o Jo

is calculated and reverse the order of integration.

The integration is first with respect to y.

1 2-2x
h = / / f(x,y) dy dx
o Jo

For each value of x, the lower limit of integration is
y = 0 and the upper limit of integration is y = 2 — 2x.
The resulting function is integrated for x from 0 to 1.

The region of integration €2, is the triangle with vertices
(0,0), (0,2) and (1,0).
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Fubini’'s theorem examples

To reverse the order of integration, take slices of y
constant y and integrate first with respect to x.

For each value of y, the lower limit of integration
is x = 0 and the upper limit of integration is
x=1-— %y. The resulting function is integrated
with respect to y from 0 to 2.

So,

1 2-2x 2 pl1-1y
h = / / f(x,y) dydx = / / f(x,y) dxdy.
o Jo o Jo
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Fubini’'s theorem examples

Example (b) (ii): Find the region over which the integral

V1—x2
L= / / f(x,y) dydx

is calculated and reverse the order of integration.

The integration is first with respect to y. y y =+1—x2
V1—x2
L = / / f(x,y) dy dx
X—
For each value of x, the lower limit of X

integration is y = x — 1 and the upper limit of

integration is y = v/1 — x2. The resulting
function is integrated for x from —1 to 1.

The region of integration €2, is the triangle with
vertices (—1,0), (0,1) and (—1,—2) with a
semi-circular cap on top.
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2

Fubini’'s theorem examples

To reverse the order of integration and integrate
with respect to x first, it is convenient to split
the region into two pieces.

1
I2A = / dy.
0

0 ,y+1
be= [ [ i) dedy

—2J-1

So,

V1i—x2
I _/ / f(x,y) dydx
1 /192 0 py+l
= f(x,y dxdy+/ / f(x,y) dxdy.
A /;\/l—y2 ( ) —-2J-1 ( )
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Uniform continuity

Definition
A function f : Q C R" — R™ is uniformly continuous on  if for all x,y € © and
for all positive € € R there exists ¢ such that

d(x,y) <& = d<f(x),f(y)) <e

In the definition of continuity, § may depend on x, but here, given ¢, the same ¢
must work for all x.

Theorem
A continuous function on a compact set €2 is uniformly continuous on €.
MATH2111 Integration Semester 1, 2014 27 / 58

Leibniz' rule

Theorem (Leibniz" rule for differentiation under the integral sign)

: : : . of . .
Consider a function f : Q C R? — R that is continuous on Q and Ix 9 uniformly
52
continuous on €. If

b
F(x) = / Fx, y)dy

then

b
Fl) =5 [ fexndy

b
of
= g(x,y)dy-

a

A similar rule applies for improper integrals.

[Given any of Leibniz’ rule, Fubini's theorem or Clairot’s theorem, the others can
be proved. See Q9 on tutorial sheet 4.]
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Proof of Leibniz' rule

Given

we want to show that

i = fim, S = [ oy
So consider
F(X+hf),_F(X) _/a 8_f(X »)dy

b b
S f(x+hy)dy— | f(x,y)dy bof
- (L L ) =, Ty [P0 gy

a

bfx+h,y—fx,y of
|t o

B (9f(c ) (x ) d [for some ¢ between x and x + h
T\, y s by the Mean Value Theorem]
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Proof of Leibniz' rule

b of of
a( c,y)— X(X,y) dy

F(x+h/)7—F(x) _/a 8_f(X Jdy| =

a

<[

of

Sre) — 5| d

s < [

Since I is uniformly continuous, for any ¢’ > 0 there is a 0 (independent of ¢, x
X
and y) such that

H(C y) = Xy)H<5 = ‘ (c,y) — f(X,y)‘<e’

- [

e -2, y>\ dy < (b a)
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Proof of Leibniz' rule

So for any € > 0 (choose € = 5 ‘ ) we can choose § so that
—a

h <6 = [c—x| <6 = H(c,y)—(x,y)H<(5

/b of of
=

Sr(c) — ()| dy <
F(x+ h) — F(x) _/a g—i(X,y)dy

b < €.
So,
. | F(x+ h) = F(x) b of B
f|1[>n0 h _L a(xhy)dy - 07
that is, ,
. F(x+h)—F(x) of
/ _ — N
F(x) = lim p = /a T oY)y
MATH2111 Integration Semester 1, 2014
Leibniz" rule examples
Use the fact that for a, b > 0,
1
dx 2
—2(Va+ b-Vb
/0 vVax+ b a ( )
to find
(a) /1 xdx
o (ax+ b)3/2
(b) /1 _odx
o (ax+b)3/2
MATH2111 Integration Semester 1, 2014
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Leibniz’ rule examples

(a) Q=1c,d] x[0,1] for 0 < ¢ < d is compact and f : Q — R with

1 of bs
f(a,x):\/m and a(a’x):_2(ax+b)3/2 for b>0

are bounded and continuous and hence are both uniformly continuous on €.

5 (] 7mms®) =a (5 (278 f>)
= s (vas) o (VR VB)
~ / ((ax+b)3/2)dxz_ (Va+B-vE)+ ava+

]

\/ b
= / 3 /2 (\/ a+b \/E) — .
(ax + b) ava+b
MATH2111 Integration Semester 1, 2014 33 / 58

Leibniz’ rule examples

(b) Q2 =c,d] x[0,1] for 0 < ¢ < d is compact and f : Q — R with

. nd by
\/ax—i—b @ ob X = 2(3X_|_b)3/2

are bounded and continuous and hence are both uniformly continuous on €.
o o
il dx | = = Va
8b</0 ax+bx) 8b< ( \/_)>
/1 0 ( 1 ) 1 < 1 1 >
= — | ——= ) dx = - —
ob ax+ b a\va+b Vb
[ -3 (m) == (G %)
= —= dx = —
2 \(ax 1 )72 Vatb b

/OW" (=)

f(b,x) = fora>0
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Leibniz’ rule examples

Given that for a > 0,
> —ax . k
/0 (S SIn(kX) dx = m
find  (a) / xe~ ¥ sin(kx) dx (b) / xe™ # cos(kx) dx.
0 0

(a) Assuming suitable continuity and uniform continuity of the integrand and its
partial derivative with respect to a,

([ =) 4t

ax - 2ak
= / 33 Sln(kX) dX) = —m
Cax 2ak
/0 —Xe a SIn(kX)dX = —m
. 2ak
= /C; xe a Sln(kX)dX = m
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Leibniz’ rule examples

/0 e~ sin(kx) dx = Wkkz

(b) Assuming suitable continuity and uniform continuity of the integrand and its
partial derivative with respect to k,

(] +=mee) -5 ot)

= / ~sin(kx) dx) = L 2k
8k a2+ k2 (a2 + k2)2
—ax a _ k2
= /0 xe~ ¥ cos(kx)dx = RS
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| eibniz’ rule with variable limits

— X, t)ax

we need to use the Fundamental Theorem of Calculus

To find

t
% ) f(x,t)dx
Now let w(t) =t and
Flu,v,w) = f(x, w)dx
The chain rule says
1
D oy OF du O dv OFd
dt’ ) T Bude T 9w de awdt
—f(u, W)#—Ff(v W) / f(x, w)dx
= —f(u, t) +f(v ) (x t)dx
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| eibniz’ rule with variable limits

Example:

%/t cos(tx) g — _cos(tﬁ)i(\ﬁ) N cos(t.t) dt \/_ g <cos )

JVi X Vit oodt £ dt
cos(ty/t) 1 cos(t?) t —xsm(tx
SR e / dx
~ cos(tV/t) cos(tz) cos(tx)
B 2t . [ t ] Vi
_ _ cos(tV/t) cos(tz) N cos(t?)  cos(tv/'t)
2t t t t
3cos(t\/_) 2 cos t?
2t t
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Change of variables

C/_\r\iv%g:_fo? o cllaades

Prow does Auwe  aea o’P ONRC C/L\aréz,
Uw\clzf A "\W&V\S":mr\rv\o«\-{on

(=G NE)

o (11)(8)=(%)

a: (L)) =)
B \\-—\k> &0\3 = Q%;\)v

< (L)) = )
[4at(1)]

~

%/
U = ("\‘l\
= | -2}
4 Avrea = 2 =
Ry MATH2111 Integration Semester 1, 2014 390 / 58
Change of variables
9 How does arca ok Q‘ )__ ab)<7(>
3 B oAl c)f\a\v\aﬂ__ v )= < d Y
a /// undes” A AgnsPormeion .
7 o: (2H)2)=(2) A CHG)=E)
B L
TR L @) =) < @) =@)
/-“/\I&’\‘O(S 2D
Aren of OABC = W OW x Serl
- L3k
a ¢ ©
h b A ©
= | c¢.0 - o+k.(aa&~bc)|\
= bl
= e = (2) = lad-el
R =, 9 -
szA ONT s = | 4o (240) |
A ?O\Vv\\kﬂ,\oﬁvaﬂ/\,
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Change of variables

Consider the integral of x over the region Q y (1,2)
shown on the right,
1 ,l4x 2 .3—x 1 2,1)
/:/X:// xdydx—l—// x dydx.
Q 0 1—x 1 x—1
Note that €2 is bounded by the lines 1 x
X+y= 17 X+y= 37 v
x—y=1, x—y=—1. 1+
Q/
Perhaps it might be easier to use
1 3| u
u=x+y and v=x-—y
14
as coordinates. In the uv-plane, the
corresponding region €’ has boundaries
u=1 u=3 v=—-1land v =1.
MATH2111 Integration Semester 1, 2014 41 / 58
Change of variables
If ‘1/
u=x+y and v=x-—y o
then .
X = E(u + v). 1 3| v
Can we simply write the integral as -1t
1 34
/ :/ / —(u + v) dudv?
1J1 2
1
No! The map dudv = 2dxdy = dxdy = §dudv.

(=G 1)) -
detG _11)‘:2_ /:/_1/1 5+ v) 5 dudv.
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scales areas by a factor of
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Change of variables

For a more general change of variables by a differentiable function f : R — R

()= 0= () =rCo)+r (o) C30)

Ax
y D C
~ Xo xo) (0
1" Xo Xo X
. B" ~ f(yo)+Jf(yo)(O)
74 /
A(x0. o) D' —14C C" =~ () + (2 (&)
D"~ £(2) + () (S)

B/

x
y DN C// A/
u
, B//
A

Area A'B'C'D’
~ Area A"B"C"D"
= Area ABCD x |detJF].
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Change of variables

Theorem (Change of variables)

Suppose F : Q C R" — R" is C!, det(JxF) # 0 for x € Q and F is one-to-one.
Then, if f is integrable on Q' = F(Q)

// f:/Q(foF)\detJF\

Alternative notation:

JM Kress (UNSW Maths & Stats)

f(x y) dxdy = /f(x(u v),y(u, v)) ‘c‘)(x ) dudv
where
Ox Ox
o(x,y) _ _ du Ov
) det(JF) = det dy y
ou Ov

MATH2111 Integration
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Change of variables

Find the area of the region Q bounded by

X2 —y2=1, X2 — y2—

X B

_X J—
Y= 5’ Y=

Let v = x> — y? and v =

s

"4
11
2
1 Q' Ox Ox
47 I(x,y) _| Ju Ov

I I d(u, v) @ 8_}/

1 4 u du  Ov
Area = /1://1dxdy:// 1 |8(X’y) dudv.

Q Q ! A(u, v)
MATH2111 Integration Semester 1, 2014 45 / 58

Change of variables

X2 2
()=r()=0)-("2")
y v Yy x
Note that F~1 is differentiable for x # 0. So
ou Ou 5 )
1| ox ay | _ X T
JIF) = @ @ = ( Y ) .
Ox Oy
_ 1 y y?
1 . - (L A . J 5 2
det(J(F )>_2XX ( 2y)< x2>_2 25 =2-2/2,

But we want

det(JF) = L — L L

det((JF)—l) N det(J(F—l)) T 2212

that is,

s (Ged) - e
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Change of variables

"

Frea SXR' ! l é;((’::,?:\ dudv
re(= 1

v du
U 1 1 1»"2.\#1'
4

n
= $taw [ihady & geved
|

{r
- rt A
=3 S. i JL#('IJ:;*"V}C’M

1

= 2 . L ey = -y

N :

2 (W)~ - W) + @)

i

v

Wb —lnd 4 el = WS 4l +h3 - lnte)

£l

(
(llu?ﬁ - I"',‘S ]
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Change of variables

Integrate x over the part of the unit disc that lies in the first quadrant.
Xy — C = (f Cos&
( Y ) F (e' ) v SinG-
ox 39% [/ cos& =St
t'l SF - 'af - . G"
% %’% sinl Vs
s detTP = Costbtrsieé = ¢

So B()t[g}\: ldedTP)| = Il =¢

e®

(nﬁ.ler deHIF) = © wher r=bl)
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Change of variables

: - o
- Sfﬁd’“‘:} = ﬁw"@f‘?\ﬁf—ﬁld”‘&
o ©

= Lrl':l..- j: r"'l(.oi'& J‘.F{ﬂlﬂ
&

I

J:r"-dr . S:Er.csc?- d&

= [431 [wsid) ©

= (- C1-0)

= 3
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Change of variables

Find 4he area of Ale W&bﬂ Lounded by
)ﬁl_\t sﬁr’n'i v=0 and v 9x-ouss .
-]

-
[.r"

J‘
N

/ & 0sSesTr
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Normal distribution

1 o—2/2
- V2m
on R. But how do we know that / p(x)dx =17

— 00

The standard normal distribution p(x) = is a probability distribution

If | = / e_deX, then
0

/2 :/ e dx / e_yzdy B {
% 56
:/ / e e dxdy 2 2
0 7'('
7

o
8

oo —

/ e~ (%) dxdy

/ 0 So,

/ = rdrd® | = /OO e dx = ﬁ
0 0 2

:/dﬁ e~ rdr
0
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Cylindrical and spherical polar coordinates

Cylindrical polar coordinates Spherical polar coordinates

4

l----

y y
X = rcosf 5 X = psin ¢ cosf 3
y =rsinf |% =r y = psingsinf ‘% = p?sin ¢
z=2z Z = pcos o
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Spherical and polar coordinates

Example (Exam 2008):

Using cylindrical or spherical polar coordinates, write down iterated integrals that
would give the volume of the region bounded below by z = 1/3x2 + 3y2 and

above by z = /4 — x2 — y2.
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Mass, centre of mass, centroid

The balance point of masses on a line is the point X about which the torque is 0.

E A " b ’

The total mass is

0= ml(xl — )_() + m2(X2 — )_() + m3(X3 — )_<)

3

3 3 3 M — Zm

2 : - 2 : _2 : — i
= m,-(x,- — X) = miXxX; — X m;. i1

i+1

3 and
Z m;X; Pk = ﬂ
— M

= X="" : : e e

3 is a discrete probability distribution
Z m; with

i+1 x = E(X).
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Mass, centre of mass, centroid

Consider a continuous mass distribution p : R — R.
p(x)

A

We can find the approximate centre of mass using an upper or lower sum of p
with respect to a partition P.

%)
RS
K
hess2
o) ]

_ b b
Zp’AX’ Xi / p(x) x dx M = / p(x) dx is the total mass
- i=1 - a
X~ — , X = 5 . (i)
Zﬁ;Ax,- / p(x) dx and pw is a probability density.
i=1 a
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Mass, centre of mass, centroid
For a lamina occupying the region For a solid body occupying the region
Q C R? with density p : Q — R, the Q C R3 with density p: Q — R, the
total mass is total mass is

M — / /Q o(x, ) dxdy M — / / /Q o(x,y, 2) dxdydz

The coordinates of the centre of mass are The coordinates of the centre of mass are

_ 1 1
X= //Q xp(x,y) dxdy = ///Q xp(x,y,z) dxdydz
_ 1 1
V=1 / /Q yp(x,y) dxdy V=9 / / /Q yp(x,y,z) dxdydz
zZ= 1 /// zp(x,y, z) dxdydz
M JJ)Ja

For a lamina or solid body of constant density, the centre of mass is called the
centroid and denoted (xc, yc, z)-
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Mass, centre of mass, centroid

Example: Find the centre of mass of the trianglular lamina with vertices at
(—1,0), (0,1) and (1,0) with density p(x,y) =

51/ The symmetry of Q and p gives x = 0.

1-y
—1 1 X :/ [yx} dy
0 y—1
1 1
Mz/Qyz/O/ y dx dy - [ Yu-n-yu-ne

0
1 1
J, 1 ;
' 1 11 1
= [ y(l—-y)—y(y—1)dy ‘:_/ = =
/o )=yy—1h) Y=MPT T 6 2
1 3
-3
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Mass, centre of mass, centroid

Example: Find the centroid of the region bounded by r = 6 and the x-axis.

1
:/ ~03cosf db
o 3

=4 — 7% (int by parts 3 times)

6(4 — 72
X Xo = % ~ —1.1358.
To calculate the centroid, take p = 1. A similar calculation gives
We have already calculated the total .
= 73 i 36
mass (area) to be A= 7°/6. /y://rsinﬁrdrdezﬂ . ™
Q o Jo
/x_/ / rcosf rdr df 2
2(mc — 6
Ve = (”—2) ~ 0.78415.

T
= —r’cosf| do
[ [57ed],
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